IMPLEMENTATION OF KERNEL COMBINATION GAUSSIAN PROCESS REGRESSOR IN LOYALTY PREDICTION (CASE STUDY: ONLINE MOTORCYCLE TAXI)
DOI:
https://doi.org/10.47080/nm9b4w40Keywords:
Customer Loyalty, Data Analysis, Gaussian Process Regressor, Online Motorcycle Taxi, Service QualityAbstract
In the application-based transportation industry, customer loyalty is a crucial factor affecting service sustainability. This study aims to analyze and predict customer loyalty in online motorcycle taxi services in Surabaya using the Gaussian Process Regressor (GPR) with a kernel combination approach. Data were collected through a survey of 467 students from public universities in Surabaya, considering service quality, price, and innovation factors. The analysis process includes data processing, validation, cleaning, and modeling using Gaussian Process Regression techniques. The results indicate that the kernel combination in GPR effectively captures complex non-linear patterns in survey data, with low Root Mean Squared Error (RMSE) and R² values close to 1. These findings suggest that the proposed approach can provide accurate customer loyalty predictions. This study contributes to developing strategies for online motorcycle taxi service providers to enhance user experience and maintain market share. The findings highlight the importance of applying machine learning models to understand customer behavior and support data-driven business decision-making.
References
Andraz Krzisnik. (2021, January 9). How To Make Gaussian Noise On Image. Epoch House.
Chasanah, N., Ferriswara, D., & Listyawati, L. (2024). Analysis of the Quality of Maxim and Indrive Online Motorcycle Taxi Services for Students of Dr. Soetomo University Surabaya. International Journal of Multicultural and Multireligious Understanding (IJMMU), 11(1). https://doi.org/10.18415/ijmmu.v11i1.5285
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, 1–24. https://doi.org/10.7717/PEERJ-CS.623
Deniz, E., & Bülbül, S. Ç. (2024). Predicting Customer Purchase Behavior Using Machine Learning Models. Information Technology in Economics and Business. https://doi.org/10.69882/adba.iteb.2024071
Dudek, A., & Baranowski, J. (2022). Gaussian Processes for Signal Processing and Representation in Control Engineering. Applied Sciences (Switzerland), 12(10). https://doi.org/10.3390/app12104946
Iqbal, M., Setiawan, H., Akhsani, R., Prayoga, S., & Kusumawati, A. (n.d.). Analisis Kualitas Layanan E-Health Surabaya: Pendekatan Integratif E-Servqual Dan Importance Performance Analysis (Ipa). Jurnal Sistem Informasi Dan Informatika (Simika) P-ISSN, 7(2), 2024.
Jim Frost. (2024). Cronbach’s Alpha: Definition, Calculations & Example. Statistics By Jim.
Keni, J. D. (2020). Prediksi Kualitas Pelayanan Dan Kepercayaan Terhadap Loyalitas Pelanggan: Kepuasan Pelanggan Sebagai Variabel Mediasi. In Jurnal Manajerial dan Kewirausahaan: Vol. II (Issue 1).
Kuswanto, A., Sundari, S., Harmadi, A., & Hariyanti, D. A. (2020). The determinants of customer loyalty in the Indonesian ride-sharing services: offline vs online. Innovation and Management Review, 17(1), 75–85. https://doi.org/10.1108/INMR-05-2019-0063
Ni Made Widnyani, Vitalia Carla Rettobjaan, & A.A. Ngurah Bagus Aristayudha. (2020). Pengaruh Harga, Promosi Dan Inovasi Terhadap Loyalitas Pelanggan Gojek (Studi Kasus Pada Universitas Bali Internasional). Jurnal Ilmiah Manajemen Dan Bisnis, 5(2), 75–92. http://journal.undiknas.ac.id/index.php/manajemen
Marshall Hargrave. (2023, July 19). Winsorized Mean: Formula, Examples and Meaning. Investopedia.
Nguyen, K., Krumm, J., & Shahabi, C. (2021). Gaussian Process for Trajectories. http://arxiv.org/abs/2110.03712
Pan, Y., Zeng, X., Xu, H., Sun, Y., Wang, D., & Wu, J. (2021). Evaluation of Gaussian process regression kernel functions for improving groundwater prediction. Journal of Hydrology, 603. https://doi.org/10.1016/j.jhydrol.2021.126960
Pritha Bhandari. (2023, June 21). How to Find Interquartile Range (IQR) | Calculator & Examples. Scribbr.
Rinjani, S. F. (2024). Analisis Pengaruh Kepuasan Pelanggan dan Kualitas Layanan terhadap Loyalitas Pelanggan Dalam Industri Jasa Gojek. In Jurnal Multidisiplin West Science (Vol. 03, Issue 06).
Setiawan, A. (2022). Penentuan Distribusi Skewness Dan Kurtosis Dengan Metode Resampling Berdasar Densitas Kernel (Studi Kasus Pada Analisis Inflasi Bulanan Komoditas Bawang Merah, Daging Ayam Ras Dan Minyak Goreng di Kota Semarang). Prosiding Seminar Nasional Sains Dan Pendidikan Sains, 240-246
Shi, X., Jiang, D., Qian, W., & Liang, Y. (2022). Application of the Gaussian Process Regression Method Based on a Combined Kernel Function in Engine Performance Prediction. ACS Omega, 7(45), 41732–41743. https://doi.org/10.1021/acsomega.2c05952
Stephanie Glen. (2009). Kaiser-Meyer-Olkin (KMO) Test for Sampling Adequacy. Statistics How To. https://www.statisticshowto.com/kaiser-meyer-olkin/