SENTIMENT ANALYSIS THE DAMAGE ESAF FRAME WITH SUPPORT VECTOR MACHINE AND IMPACT ON HONDA MOTORCYCLE SALES

Authors

  • Kinanthi Putri Ariyani Universitas Pembangunan Nasional Veteran Jawa Timur
  • Aviolla Terza Damaliana Universitas Pembangunan Nasional Veteran Jawa Timur
  • Trimono Trimono Universitas Pembangunan Nasional Veteran Jawa Timur

DOI:

https://doi.org/10.47080/m0kyc955

Keywords:

eSAF Frame, Sales, Sentiment Analysis, Support Vector Machine

Abstract

Damage to the Enhanced Smart Architecture Frame (eSAF) on Honda motorcycles has triggered consumer concerns and has become a public spotlight. This study analyzes public sentiment towards the problem using the Support Vector Machine (SVM) and its impact on sales at one of the dealerships in Surabaya. The data used was in the form of comments from Twitter social media which were classified into two classes, namely positive and negative. Based on the results of the analysis, the majority of 589 public sentiments (59.7%) tended to be negative towards the problem of damage to the eSAF frame, while 397 public sentiments (40.3%) showed positive sentiment. Sales results showed significant fluctuations after this issue emerged, along with increasing negative sentiment. SVM models with a Linear kernel provide the best results with 85% accuracy, 84% precision, 85% recall, and 85% f1-score. SVM was chosen because it excels in text classification compared to algorithms such as K-Nearest Neighbors (KNN), C4.5, and Naïve Bayes, and has been applied in areas such as face detection, bioinformatics, and text processing. This research provides insights for manufacturers to improve product quality, improve customer service, and restore public trust. In addition, the use of the Support Vector Machine algorithm in sentiment analysis can be a reference for similar research in other fields.

References

Addiga, A., & Bagui, S. (2022). Sentiment Analysis on Twitter Data Using Term Frequency-Inverse Document Frequency. Journal of Computer and Communications, 117-128.

Agatha, A., Paramita, S., & Sudarto. (2022). Opini Publik Netizen terhadap Pencemaran Nama Baik di Media Online. Jurnal Koneksi, 278-286.

Alexandro, R., Uda, T., Hariatama, F., & Sinaga, B. D. (2022). Analysis of Percentage Frequency Distribution Towards Satisfaction from Users of Honda Motorcycles. International Journal of Social Science and Business, 191-198.

Fitriyah, N., Warsito, B., & Maruddani, D. A. (2020). Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (SVM). Jurnal Gaussian, 376-390.

Hanafi, A., Adiwijaya, & Astuti, W. (2020). Klasifikasi Multi Label Pada Hadis Bukhari Terjemahan Bahasa Indonesia Menggunakan Mutual Information dan K-Nearest Neighbor. Jurnal SISFOKOM (Sistem Informasi dan Komputer), 357-364.

Hasbi, M. R., & Sugiyono, H. (2023). Problematika Penggunaan Rangka Enhanced Smart Architecture Frame Pada Sepeda Motor yang Cacat Produksi (Studi Kasus Kerusakan Rangka Motor Matic Honda). Jurnal Interpretasi Hukum, 712-720.

Herwinsyah, & Witanti, A. (2022). Analisis Sentimen Masyarakat Terhadap Vaksinasi COVID-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Sistem Informasi dan Informatika (SIMIKA), 59-67.

Husada, H. C., & Paramita, A. S. (2021). Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Informasi dan Komunikasi, 18-26.

Indonesia, C. (2024, March 28). 78 Persen Motor Baru Terjual di Indonesia 2023 adalah Merek Honda. Retrieved September 20, 2024, from CNN Indonesia: https://www.cnnindonesia.com/otomotif/20240327184707-595-1079768/78-persen-motor-baru-terjual-di-indonesia-2023-adalah-merek-honda

Indransyah, R., Chrisnanto, Y. H., & Sabrina, P. N. (2022). Sentimen Pergelaran Motogp di Indonesia Menggunakan Algoritma Correlated Naïve Bayes Clasifier. Infotech Journal, 60-66.

Lubis, N. R., & Zahara, F. (2024). Perlindungan Konsumen Terhadap Pembelian Sepeda Motor Baru Mengenai Kerusakan Rangka Esaf Ditinjau Dari Perspektif Ibnu Taimiyah dan Undang-Undang Nomor 8 Tahun 1999 Tentang Perlindungan Konsumen. UNES LAW REVIEW, 6970-6980.

Maharani, C. A., Warsito, B., & Santoso, R. (2023). Analisis Sentimen Vaksin COVID-19 Pada Twitter Menggunakan Recurrent Neural Network (RNN) dengan Algoritma Long Short-Term Memory (LSTM). Jurnal Gaussian, 403-413.

Praghakusma, A. Z., & Charibaldi, N. (2021). Komparasi Fungsi Kernel Metode Support Vector Machine untuk Analisis Sentimen Instagram dan Twitter (Studi Kasus Komisi Pemberantasan Korupsi). Jurnal Sarjana Teknik Informatika, 9, 33-42.

Statistik, B. P. (2024, Februari 20). Jumlah Kendaraan Bermotor Menurut Provinsi dan Jenis Kendaraan (unit), 2023. Retrieved September 19, 2024, from Badan Pusat Statistik (BPS – Statistics Indonesia): https://www.bps.go.id/id/statistics-table/3/VjJ3NGRGa3dkRk5MTlU1bVNFOTVVbmQyVURSTVFUMDkjMw==/jumlah-kendaraan-bermotor-menurut-provinsi-dan-jenis-kendaraan--unit---2023.html?year=2023

Syafi’i, A. C., & Wiranata, A. D. (2024). Analisis Sentimen Terhadap Rangka E-SAF Honda Pada Media Sosial X Dengan Algoritma Naïve Bayes. KLIK: Kajian Ilmiah Informatika dan Komputer, 57-66.

Utama, M. A., & Sakti, M. (2024). Consumer Protection for Honda Vehicle Users with Frame eSAF Damage Based on the Principles of Consumer Safety and Security. Journal of Law, Politic, and Humanities (JLPH), 1325-1331.

Yoga, Z. (2023, September 11). Pedagang Motor Bekas: Efek Viral Rangka eSAF Honda Keropos, Konsumen Lebih Pilih Opsi Lain. Retrieved Maret 2, 2025, from OTO by CarDekho SEA: https://www.oto.com/berita-motor/pedagang-motor-bekas-efek-viral-rangka-esaf-honda-keropos-konsumen-lebih-pilih-opsi-lain

Downloads

Published

2025-08-08

How to Cite

SENTIMENT ANALYSIS THE DAMAGE ESAF FRAME WITH SUPPORT VECTOR MACHINE AND IMPACT ON HONDA MOTORCYCLE SALES. (2025). Jurnal Sistem Informasi Dan Informatika (Simika), 8(2), 223-235. https://doi.org/10.47080/m0kyc955