KOMPARASI SUPPORT VECTOR MACHINE (SVM) DAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) PADA PERAMALAN HUJAN DI DAERAH ALBURY, AUSTRALIA
Abstract
Rain is one of the 4 weather conditions on earth. The rain itself is sometimes erratic. For some people, rain is sometimes seen as an obstacle in carrying out their daily activities. Therefore, predictions about rain are needed. Predictions about rain really help people in carrying out their daily activities. The research aims to compare the predictive performance of SVM and ARIMA in forecasting rain. The data used in this case study research is data regarding daily weather for 10 years in the Albury area, Australia from 2008-2017 with a lot of 3040 data. The results obtained from SVM for forecasting rain using daily weather data for 10 years in the Albury area, Australia with the best accuracy rate with the SVM model is 97.532% with an error rate of 2.468%, while in the ARIMA model, the results are MAE 0.181, RMSE 0.254 and MAPE 0.159. So it can be concluded that the ARIMA model has a better performance in predicting rain than the SVM method.
References
Australia Weather Data | Kaggle. (n.d.). Retrieved January 4, 2023, from https://www.kaggle.com/datasets/arunavakrchakraborty/australia-weather-data
Awad, M., & Khanna, R. (2015). Efficient learning machines: Theories, concepts, and applications for engineers and system designers. Apress Berkeley.
Faradiba, N. (2021). Proses Terjadinya Hujan dan Penjelasannya Menurut Sains Halaman all - Kompas.com. KOMPAS.COM. https://www.kompas.com/sains/read/2021/05/20/100400923/proses-terjadinya-hujan-dan-penjelasannya-menurut-sains?page=all
Favorisen, R. L., Sani, R. S., Kurniawan, D., & Irawati, A. R. (2019). IMPLEMENTASI METODE SUPPORT VECTOR MACHINE DALAM PREDIKSI PERSEBARAN DEMAM BERDARAH DI KOTA BANDAR LAMPUNG. Jurnal Komputasi, 7(2), 63–73.
Hendrawan, B. (2012). Penerapan Model Arima dalam Memprediksi IHSG. Jurnal Integrasi, 4(2).
Nanda, M. A., Seminar, K. B., Nandika, D., & Maddu, A. (2018). A comparison study of kernel functions in the support vector machine and its application for termite detection. Information, 9(5), 1–14.
Nodes – KNIME Community Hub. (n.d.). Retrieved January 4, 2023, from https://hub.knime.com/search?type=Node&sort=maxKudos
Nugroho, A. S., Witarto, A. B., & Handoko, D. (2003). Support Vector Machine –Teori dan Aplikasinya dalam Bioinformatika. Proceeding of Indonesian Scientific Meeting in Central Japan.
Rahmadina, R. (2019). Perbandingan Metode Klasifikasi Support Vector Machine (SVM), Naïve Bayes Classifier (NBC), dan Diskriminan pada Data Forest Fires. .
Rezkia, S. M. (2021, February 19). Algoritma Supervised Vs Unsupervised Learning, Cari Tahu Bed... https://dqlab.id/algoritma-supervised-vs-unsupervised-learning
Rumini, N. (2020). PERBANDINGAN METODE ARIMA DAN EXPONENTIAL SMOOTHING HOLT-WINTERS UNTUK PERAMALAN DATA KUNJUNGAN. Jurnal Sistem Informasi, 9(3), 622–632.
Sismi, & Darsyah, M. Y. (2018). Perbandingan Prediksi Harga Saham PT.BRI, Tbk dengan METODE ARIMA dan MOVING AVERAGE.
Suma, B. (2020). PENERAPAN MACHINE LEARNING DI DALAM PREDIKSI CUACA. Universitas Pasundan.
Supeno, H. (2019). Pertemuan 14 Machine Learning. Universitas Pasundan.
Tarigan, I. A., Bayupati, I. P. A., & Putri, G. A. A. (2021). Komparasi model support vector machine dan backpropagation dalam peramalan jumlah wisatawan mancanegara di provinsi Bali. Jurnal Teknologi Dan Sistem Komputer, 9(2), 90–95.
Zaiem Praghakusma, A., & Charibaldi, N. (2021). Komparasi Fungsi Kernel Metode Support Vector Machine untuk Analisis Sentimen Instagram dan Twitter (Studi Kasus : Komisi Pemberantasan Korupsi). 9(2), 33–42. https://doi.org/10.12928/jstie.v8i3.xxx