FORECASTING CATEGORY IN PUBLIC SCHOOL STAFF STUDENTS AND SPENDING IN 2018 WITH COMPARISON METHOD

Support Vector Machine and Autoregressive Integrated Moving Average with Python

  • Cholifatur Rozzika UIN Sunan Ampel Surabaya
  • Amrina Rosyada UIN Sunan Ampel Surabaya
  • Wanda Alifiyah Pramesti UIN Sunan Ampel Surabaya
  • Dwi Rolliawati UIN Sunan Ampel Surabaya
Keywords: ARIMA, Forecasting, Machine Learning, SVM, Timeseries

Abstract

Education is one of the efforts to develop capabilities and shape the character and civilization of a dignified nation. Increasingly expensive education costs require parents to prepare more maturely. Therefore, the purpose of this study is to show forecasting of rill costs per student in 2018 using the Timeseries Public School Staff, Students, and Spending 1970-2017 data. In this study, the ARIMA and the SVM model are used to forecast rill costs per student in 2018. ARIMA is one of the simplest models and the most widely used method. This model will be compared using machine learning, namely SVM. From the experimental results that compare the performance of SVM and ARIMA. In the calculation above, the MAPE results from the Arima and SVM models are 0.142 and 0.0029. Whereas for RMSE the results of the ARIMA calculations obtained results of 36.625, while for SVM the RMSE results obtained were 7.470. The results of the study concluded that the SVM model has a better performance in predicting crude oil prices compared to the ARIMA method.

References

Karaçor, Zeynep., Güvenek, Burcu., Ekinci, Esra and Konya , Sevilay. 2018. PANEL ESTIMATION FOR THE RELATIONSHIP BETWEEN EDUCATION EXPENDITURE AND ECONOMIC GROWTH FOR OECD COUNTRIES. Forum Scientiae Oeconomia. 6(2), http://dx.doi.org/10.23762/FSO_vOL6NO2_18_1

K-means, K. M. A., Kurniadewi, H., Hakim, R. A., Jajuli, M., & Jaman, J. H. (2022). Pemetaan UMKM dalam Upaya Pengentasan Kemiskinan dan Penyerapan Tenaga. 6(2), 113–119.

Kurniawan, A. F., Pane, S. F., & Awangga, R. M. (2021). Prediksi Jumlah Penjualan Rumah di Bojongsoang ditengah Pandemi Covid-19 dengan Metode ARIMA. 5, 1479–1487. https://doi.org/10.30865/mib.v5i4.3121

Lestari, I., Sumargo, B., & Ladayya, F. (2022). Pemodelan ARIMA Intervensi untuk Meramalkan Harga Minyak Mentah Dunia. 22(2), 133–146.

Mapes, K., & Topham, K. (2020). Exploring Data Visualization with Flourish.

Pratiwi, D., & Hadijati, M. (2021). Prediction of gold price with ARIMA and SVM. https://doi.org/10.1088/1742-6596/1767/1/012022

Puspita, V. (2017). Time Series untuk Peramalan Konsumsi Listrik Menggunakan Metode Support Vector Machine ( SVM ). 3(1), 261–264.

Statistika, P. S., Matematika, F., Ilmu, D. A. N., Alam, P., & Indonesia, U. I. (2022). ANALISIS SENTIMEN UU CIPTA KERJA MENGGUNAKAN METODE SUPPORT VECTOR MACHINE ( SVM ).

Waskom, M. L. (2021). seaborn : statistical data visualization Statement of need. 6, 1–4. https://doi.org/10.21105/joss.03021

Witanti, A., D. (2022). ANALISIS SENTIMEN MASYARAKAT TERHADAP VAKSINASI COVID-19 PADA MEDIA SOSIAL TWITTER MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM). Jurnal Sistem Informasi Dan Informatika (Simika) P-ISSN, 5, 2622–6901.
Published
2023-02-27
How to Cite
Rozzika, C., Rosyada, A., Pramesti, W., & Rolliawati, D. (2023). FORECASTING CATEGORY IN PUBLIC SCHOOL STAFF STUDENTS AND SPENDING IN 2018 WITH COMPARISON METHOD. Jurnal Sistem Informasi Dan Informatika (Simika), 6(1), 91-98. https://doi.org/10.47080/simika.v6i1.2409