OPTIMALISASI STRATEGI PROMOSI BERDASARKAN WAKTU DAN JENIS PRODUK MENGGUNAKAN ALGORITMA FP-GROWTH
DOI:
https://doi.org/10.47080/dy69fk12Keywords:
Association Rule Mining, FP-Growth, Promotion Strategy, Time of PurchaseAbstract
Aba Mart is a convenience store that provides a wide range of daily necessities. One of the challenges faced by Aba Mart is the uncertainty in determining the optimal timing for product promotions. To address this issue, this study utilizes sales transaction data obtained from the store’s Point of Sale (POS) system, totaling 12,887 transactions recorded from March to August 2024. The dataset includes attributes such as date and product name, which were processed through attribute selection, categorization into 33 product types, conversion of dates to days, and transformation into boolean format for analysis. The study applies the Association Rule Mining (ARM) technique using the Frequent Pattern Growth (FP-Growth) algorithm to identify the relationship between the time of purchase and the types of products bought. The results demonstrate that the FP-Growth algorithm successfully identified patterns of association. By testing with minimum support values of 2%, 3%, and 4%, and a minimum confidence of 10%, the analysis produced 15 association rules in March, 11 in April, 14 in May, 13 in June, 11 in July, and 13 in August 2024. These rules have been used as a foundation for formulating more effective and targeted promotional strategies for Aba Mart.
References
Abdurrahman, A., Rahayu, N., Genadi, Y. D., & Pradnyani, I. G. A. A. (2022). Membangun Strategi Pemasaran dalam Meningkatkan Daya Saing Bisnis Pasca Pandemi Covid-19. Target: Jurnal Manajemen Dan Bisnis, 4(2), 203–212. https://doi.org/10.30812/target.v4i2.2606
Akbar, A. A., Izzulhaq, A. B., Nursabila, N., & Hananto, V. R. (2023). Analisis Data Penjualan Pada Supermarket Xyz Menggunakan Metode Market Basket. Jurnal Sistem Informasi Dan Informatika (Simika), 6(2), 142–152. https://doi.org/10.47080/simika.v6i2.2711
Anggrawan, A., & Satria, C. (2021). Menentukan Akurasi Tata Letak Barang dengan Menggunakan Algoritma Apriori dan Algoritma FP-Growth Determination of Item Layout Accuracy using Apriori Algorithm and FP-Growth Algorithm. 21(1), 125–138. https://doi.org/10.30812/matrik.v21i1.1260
Deanita, Inggih Permana, Rice Novita, M. (2023). Penerapan Algoritma FP-Growth Dalam Pencarian Hubungan Antara Waktu Pembelian Dan Barang yang Dibeli Untuk Strategi Promosi Penjualan. Jurnal Ilmiah Komputer, 19(2), 684–691.
Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1), 53–87. https://doi.org/10.1023/B:DAMI.0000005258.31418.83
Hassa, R. S. (2023). Analisis Pengaruh Display Produk Terhadap Keputusan Pembelian pada Usaha Mikro Kecil dan Menengah Donat Madu di Bandung, Indonesia. International Journal Administration Business and Organization, 4(1), 1–11. https://doi.org/10.61242/ijabo.23.229
Intoniswan. (2024). Jumlah Toko Kelontong 3,94 Juta, Mendag: Setara 98,78 Persen Ritel. Niaga Asia.
Marzuqah, T., Permana, I., & Afdal, M. (2023). Penerapan Algoritma FP-Growth Dalam Pencarian Hubungan Antara Waktu Pembelian Dan Barang yang Dibeli Untuk Strategi Promosi Penjualan. JURIKOM (Jurnal Riset Komputer), 10(3), 697–703. https://doi.org/10.30865/jurikom.v10i3.6347
Mustakim, Herianda, D. M., Ilham, A., Daeng Gs, A., Laumal, F. E., Kurniasih, N., Iskandar, A., Manulangga, G., Indra Iswara, I. B. A., & Rahim, R. (2018). Market Basket Analysis Using Apriori and FP-Growth for Analysis Consumer Expenditure Patterns at Berkah Mart in Pekanbaru Riau. Journal of Physics: Conference Series, 1114(1). https://doi.org/10.1088/1742-6596/1114/1/012131
Nurohim, G. S. (2022). Analisa Pola Belanja Alat Kesehatan di Shopee JoyoAlkes Menggunakan Algoritma FP-Growth. Indonesian Journal Computer Science, 1(1), 34–39. https://doi.org/10.31294/ijcs.v1i1.1098
Satria, C., Anggrawan, A., & Mayadi. (2023). Recommendation System of Food Package Using Apriori and FP-Growth Data Mining Methods. Journal of Advances in Information Technology, 14(3), 454–462. https://doi.org/10.12720/jait.14.3.454-462
Sianturi, R. D., & Yanny, A. (2021). Strategi Promosi dan Store Interior Terhadap Daya Beli Konsumen Pada Industri Ritel (Studi Kasus Indomaret Johor). ARBITRASE: Journal of Economics and Accounting, 2(1), 6–11. https://doi.org/10.47065/arbitrase.v2i1.229
Sikumbang, E. D. (2018). Penerapan Data Mining Penjualan Sepatu Menggunakan Metode Algoritma Apriori. Jurnal Teknik Komputer AMIK BSI (JTK), Vol 4, No.(September), 1–4.
Sofyan, M., Rulandari, N., & Sari, Y. (2021). Analisis Proses Keputusan Pembelian Online Pada Shopee Mall Indonesia. Jurnal Ilmiah Ekonomi Bisnis, 26(3), 306–315. https://doi.org/10.35760/eb.2021.v26i3.4019
Susanti, Islam, M. H., & Rahman, M. A. (2024). Strategi Promosi Produk dalam Menghadapi Persaingan di Era Modernisasi. Jurnal Informatika Ekonomi Bisnis, 6(2), 458–462. https://doi.org/10.37034/infeb.v6i2.901
Syahputri, N. (2020). Penerapan Data Mining Asosiasi pada Pola Transaksi dengan Metode Apriori. Jurnal Sains Komputer & Informatika (J-SAKTI, 4(2), 728–736.
Triana, L. A., Khoerida, N. I., Widiawati, N. T., & Tahyudin, I. (2022). Implementation of the FP-Growth Algorithm in Sales Transactions for Menu Package Recommendations at Warung Oemah Tani. Internet of Things and Artificial Intelligence Journal, 2(2), 111–121. https://doi.org/10.31763/iota.v2i2.563
Wilrose, A., Afdal, M., Monalisa, S., & Munzir, M. R. (2023). Penerapan Algoritma FP-Growth untuk Menentukan Strategi Promosi Berdasarkan Waktu dan Pembelian Produk. Building of Informatics, Technology and Science (BITS), 5(1), 104–113. https://doi.org/10.47065/bits.v5i1.3577