KLASTERING WILAYAH DI JAWA TIMUR BERDASARKAN FAKTOR UNMET NEED MENGGUNAKAN FUZZY GUSTAFSON-KESSEL
DOI:
https://doi.org/10.47080/5b2g7x82Keywords:
Clustering , Fuzzy Gustafson-Kessel, Fuzzy Silhouette Index, Xie-Beni, Unmet NeedAbstract
The Family Planning Program is an effort to control the rate of population growth by regulating desired pregnancies. In its realization, the family planning program faces challenges in the form of unmet need (couples of childbearing age who do not use contraception). East Java Province in 2023 was recorded as the province with the third highest number of unmet need cases in Java. One method that can be used to analyze the phenomenon of unmet need is clustering analysis. Clustering analysis will help identify areas in East Java based on the priority level of the family planning program. Fuzzy Gustafson-Kessel (FGK) is one of the clustering methods developed as a refinement of the Fuzzy C-Means method. This study implements the Fuzzy Gustafson-Kessel (FGK) method with and without Principal Component Analysis (PCA) to cluster regions in East Java based on unmet need and determinant factors such as the availability of family planning facilities and resources. The results showed that the best model was obtained when using FGK with PCA, with the highest FSI value of 0.668 and XB of 0.235 at configuration c = 4 and m = 3.5. The clusters formed consist of 5 medium priority areas, 12 low priority areas, 9 high priority areas, and 12 developing priority areas. The results of this clustering can be used as a basis for policy makers in designing more effective intervention strategies to address unmet need in East Java.
References
Anggraini, C., Putri, R., & Rini, A. S. (2022). Hubungan fasilitas pelayanan kesehatan, sumber informasi dan persepsi ibu terhadap penggunaan kontrasepsi IUD. SENTRI: Jurnal Riset Ilmiah, 1(3), 685–694.
Bella Dwi Saputri, & Diah Indriani. (2022). Pemetaan Cakupan Pengguna KB Aktif Dan Unmet Need Di Kabupaten Ponorogo Tahun 2021. J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 15(1). https://doi.org/10.36456/jstat.vol15.no1.a5446
BPS. (2024, January 2). Persentase Unmet Need Pelayanan Kesehatan Menurut Provinsi (Persen), 2021-2023. Badan Pusat Statistika. https://www.bps.go.id/id/statistics-table/2/MTQwMiMy/unmet-need-pelayanan-kesehatan-menurut-provinsi.html
BPS Sulawesi Utara. (2023). Jumlah Penduduk Menurut Provinsi di Indonesia (Ribu Jiwa), 2021-2023. Badan Pusat Statistika Sulawesi Utara. https://sulut.bps.go.id/id/statistics-table/2/OTU4IzI=/jumlah-penduduk-menurut-provinsi-di-indonesia.html
Destia, B., & Kartikasari, M. D. (2023). Comparison of Fuzzy C-Means and Fuzzy Gustafson-Kessel Clustering Methods in Provincial Grouping in Indonesia Based on Criminality-Related Factors. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(2), 1093–1102.
Fahmi Ahmad Aulia, Irlandia Ginanjar, & Achmad Bachrudin. (2022). Pengelompokkan Desa Di Kabupaten Bandung Berdasarkan Indikator Pembangunan Desa Tahun 2021 Dengan Fuzzy C-Medoids Clustering. Seminar Nasional Statistika Aktuaria I (2022), 1(1), 260–268.
Fahrudin, T. M., Riyantoko, P. A., Hindrayani, K. M., & Swari, M. H. P. (2021). Cluster Analysis of Hospital Inpatient Service Efficiency Based on BOR, BTO, TOI, AvLOS Indicators Using Agglomerative Hierarchical Clustering. Telematika, 18(2), 194–210. https://doi.org/10.31315/telematika.v18i2.4786
Fahrudin, T. M., Sari, A. R. F., Lisanthoni, A., & Lestari, A. A. D. (2022). Analisis Speech-To-Text Pada Video Mengandung Kata Kasar Dan Ujaran Kebencian Dalam Ceramah Agama Islam Menggunakan Interpretasi Audiens Dan Visualisasi Word Cloud. SKANIKA: Sistem Komputer Dan Teknik Informatika, 5(2), 190–202.
Hediyati, D., & Suartana, I. M. (2021). Penerapan Principal Component Analysis (PCA) Untuk Reduksi Dimensi Pada Proses Clustering Data Produksi Pertanian Di Kabupaten Bojonegoro. JIEET (Journal of Information Engineering and Educational Technology), 5(2), 49–54.
Hidayati, S., Darmaliana, A. T., & Riski, R. (2022). Comparison of K-Means, Fuzzy C-Means, Fuzzy Gustafson Kessel, and DBSCAN for Village Grouping in Surabaya Based on Poverty Indicators. Jurnal Pendidikan Matematika (Kudus), 5(2), 185–198.
Hindrayani, K. M., Fahrudin, T. M., Aji, R. P., & Safitri, E. M. (2020). Indonesian Stock Price Prediction Including Covid19 Era Using Decision Tree Regression. 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 344–347.
Idhom, M., Fauzi, A., Trimono, T., & Riyantoko, P. (2023). Time Series Regression: Prediction of Electricity Consumption Based on Number of Consumers at National Electricity Supply Company. TEM Journal, 12(3), 1575.
Mahmudan, A. (2020). Clustering of District or City in Central Java Based COVID-19 Case Using K-Means Clustering. J. Mat. Stat. Dan Komputasi, 17(1), 1–13.
Nurohmah, Y., Mayasari, R., & Sari, B. N. (2023). Optimalisasi Performa K-Means Clustering Dengan Pca Dalam Analisis Tingkat Kemiskinan Di Jawa Barat. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1657–1665.
Nurzida, A., Utami, I. T., & Rochayani, M. Y. (2024). Perbandingan Metode Fuzzy C-Means Dan Gustafson-Kessel Dalam Penentuan Cluster Tingkat Risiko Penularan Tuberculosis Terhadap Penyakit Di Jawa Timur. Jurnal Gaussian, 13(2), 373–382.
Oktarina, C. R., Sriliana, I., Sidik, E. N. F., & Firmansyah, M. A. (2024). Pemodelan Data Geospasial Balita Kurang Gizi Dengan Pendekatan Geographically Weighted Regression Principal Component Analysis. Jurnal Gaussian, 13(2), 339–350.
Paradilla, Y. S., Hayati, M. N., & Sifriyani, S. (2023). Implementation of The Fuzzy Gustafson-Kessel Method on Grouping Districts/Cities in Kalimantan Island Based on Poverty Issues Factors. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(1), 125–134.
Pramana, S., Yuniarto, B., Santoso, I., Nooraeni, R., & Suadaa, L. H. (2023). Data Mining dengan R, Konsep dan Implementasi. In Media.
Prasetya, D. A., Sari, A. P., Idhom, M., & Lisanthoni, A. (2025). Optimizing Clustering Analysis to Identify High-Potential Markets for Indonesian Tuber Exports. Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics, 7(1), 113–122.
Putri, F. A. A., & Rochmawati, N. (2021). Penerapan Algoritma Gustafson-Kessel untuk Clustering Tweets Mention Akun Go-jek dan Grab Indonesia. Journal of Informatics and Computer Science (JINACS), 2(03), 204–212.
Ragestu, F. D., & Sibarani, A. J. P. (2020). Penerapan Metode Fuzzy Tsukamoto Dalam Pemilihan Siswa Teladan di Sekolah. Teknika, 9(1). https://doi.org/10.34148/teknika.v9i1.251
Safitri, H., Siregar, K. N., Eryando, T., Herdayati, M., Rahmadewi, R., & Irawaty, D. K. (2021). Pemberian Layanan Keluarga Berencana Berpengaruh Penting Terhadap Kejadian Unmet Need: Analisis Lanjut Data SDKI 2017. Jurnal Biostatistik, Kependudukan, Dan Informatika Kesehatan, 1(2), 66–78. https://doi.org/10.51181/bikfokes.v1i2.4751
Samsir, S., Watrianthos, R., & Suryadi, S. (2023). Distribusi Spasial Unmet Need Pelayanan Kesehatan dengan Algoritma K-Means untuk Pemetaan Provinsi di Indonesia. Bulletin of Information Technology (BIT), 4(3), 362–368.
Tambuwun, C. H., Langi, Y. A. R., & Rindengan, A. J. (2020). Estimasi Bobot Parameter M Pada Fuzzy C-Means Menggunakan Analisis Robust Dengan Simulasi Data Spasial. D’Cartesian: Jurnal Matematika Dan Aplikasi, 9(1), 50–55.
Wahyu, A., & Rushendra, R. (2022). Klasterisasi Dampak Bencana Gempa Bumi Menggunakan Algoritma K-Means di Pulau Jawa. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 8(1), 174–179.
Yuliati, I. F. (2021). Peramalan Dan Analisis Hubungan Faktor Penggerakan Lini Lapangan Dalam Meningkatkan Peserta Kb Aktif Mkjp. Jurnal Keluarga Berencana, 6(2), 35–48.