PENERAPAN METODE SIMPLE ADDITIVE WEIGHTING DALAM PEMILIHAN MEDIA PROMOSI SEKOLAH (STUDI KASUS DI MTS LABORATORIUM UIN BUKITTINGGI)
DOI:
https://doi.org/10.47080/6he5pd48Keywords:
Decision Support System, Promotional Media, School, Simple Additive Weighting, TechnologyAbstract
Schools play a strategic role in organizing learning and implementing promotional strategies to increase student enrollment. The use of information technology in promotions is crucial for enhancing institutional competitiveness. MTs Laboratorium UIN Bukittinggi faces challenges in determining the most effective promotional media among various alternatives. While several media have been implemented, the selection process lacks a systematic analytical approach, making it difficult to measure effectiveness objectively. This study applies the Simple Additive Weighting (SAW) method to determine the most effective promotional media. This study represents the first application of the SAW method for selecting school promotional media based on multi-criteria decision-making. The methodology includes defining criteria and weights, inputting alternative data, assessing suitability ratings, normalizing the decision matrix, and ranking alternatives. The dataset was collected from MTs Laboratorium UIN Bukittinggi, evaluating five media alternatives based on four criteria: promotion duration, reach, information completeness, and production cost. The results show that direct socialization achieved the highest final score of 0.91, followed by websites (0.51), banners (0.49), brochures (0.472), and social media (0.33). These findings provide practical guidance for schools in selecting promotional media that are both effective and efficient in attracting prospective students, optimizing resource allocation, and enhancing promotional impact. This study confirms that the SAW method effectively selects promotional media and can assist educational institutions in improving their promotional strategies
References
Abdel-Basset, M., Mohamed, M., & Florentin Smarandache. (2018). An Extension of Neutrosophic AHP–SWOT Analysis for Strategic Planning and Decision-Making. Journal oF Decision Systems, 27(1), 95–117.
Alam, S. N., Haipon, H., Ningtyas, S., Saludin, S., & Kraugusteeliana, K. (2023). Penerapan Metode WASPAS dalam Pemilihan Handphone Gaming Terbaik. Journal of Computer System and Informatics (JoSYC), 4(2), 405–411. https://doi.org/10.47065/josyc.v4i2.3087
Arman, M. (2023). Sistem Pendukung Keputusan Pemilihan Sma Negeri Se-Bandar Lampung Menggunakan Metode Simple Additive Weighting (Saw). Jurnal Teknologi Pintar, 3(4). http://teknologipintar.org/index.php/teknologipintar/article/view/384
Arthawan, P. A. Y., Suyasa, P. A. W., & D. S. Wahyuni. (2020). PengembanganKonten Pembelajaran Dengan Model Blended Learning Pada Mata Pelajaran Informatika. Karmapati, 9(2), 172–184.
Faisal, A., & Rusda, D. (2022). Sistem Pendukung Keputusan Penerimaan Bantuan Dana Desa BLT dengan Metode SAW Berbasis WEB. JURIKOM (Jurnal Riset Komputer), 9(1), 131. https://doi.org/10.30865/jurikom.v9i1.3886
Kaur, M., Singh, A., & gurcharan Singh Buttar. (2023). Multi-criteria decision making approach by fuzzy TOPSIS using an intuitionistic fuzzy entropy measure. AIP Conference Proceedings. https://doi.org/10.1063/5.0140458
Nawawi, H. M., Yudhistira, Y., Mustopa, A., Wildah, S. K., Agustiani, S., & Iqbal, M. (2021). Sistem Pendukung Keputusan Pemilihan Tempat Usaha Potensial dengan Metode SAW (Studi Kasus : SahabatLink Tasikmalaya). Indonesian Journal on Software Engineering (IJSE), 7(1), 26–34. https://doi.org/10.31294/ijse.v7i1.9990
Sari, R., & Fahrurozi, A. (2022). Sistem Pendukung Keputusan Pemilihan Media Pembelajaran dengan Metode Simple Additive Weighting. Jurnal Infortech, 4(2), 164–168.
Sari, R. P., & Adi, A. C. (2021). Sistem Penentuan Kualitas Hewan Qurban di Indonesia dengan Metode SAW. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(2), 44–51. https://doi.org/10.25077/teknosi.v7i2.2021.44-51
Sedghiyan, D., Ashouri, A., Maftouni, N., Xiong, Q., Rezaee, E., & Sadeghi, S. (2021). Prioritization of renewable energy resources in five climate zones in Iran using AHP, hybrid AHP-TOPSIS and AHP-SAW methods. Sustainable Energy Technologies and Assessments, 44, 101045. https://doi.org/10.1016/j.seta.2021.101045
Setiawansyah, S., & Saputra, V. H. (2023). Kombinasi Pembobotan PIPRECIA-S dan Metode SAW dalam Pemilihan Ketua Organisasi Sekolah. Jurnal Ilmiah Informatika Dan Ilmu Komputer (JIMA-ILKOM), 2(1), 32–40. https://doi.org/10.58602/jima-ilkom.v2i1.16
Siagian, J. S. A., Purba, B., Ambarsari, E. W., & Rohayani, H. (2023). Penerapan Metode Simple Additive Weighting dalam Penentuan Prioritas Program Pembangunan Daerah. Journal of Informatics, Electrical and Electronics Engineering, 3(2), 236–243. https://doi.org/10.47065/jieee.v3i2.1542
Situmeang, I. J. T., Hummairoh, S., Harahap, S. M., & Mesran, M. (2021). Application of SAW (Simple Additive Weighting) for the Selection of Campus Ambassadors. The IJICS (International Journal of Informatics and Computer Science), 5(1), 21. https://doi.org/10.30865/ijics.v5i1.2847
Tonbesi, F. X., & Kelen, Y. (2023). Sistem Pendukung Keputusan Pemilihan Media Promosi Sekolah Menggunakan Metode MOORA. In Search, 22(2), 262–270. https://doi.org/10.37278/insearch.v22i2.731
Ulama, E. K., Priandika, A. T., & Ariany, F. (2022). Sistem Pendukung Keputusan Pemilihan Sapi Siap Jual (Ternak Sapi Lembu Jaya Lestari Lampung Tengah) Menggunakan Metode Saw. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 3(2), 138–144. https://doi.org/10.33365/jatika.v3i2.2022
Vafaei, N., Ribeiro, R. A., & Camarinha-Matos, L. M. (2021). Assessing Normalization Techniques for Simple Additive Weighting Method. Procedia Computer Science, 199, 1229–1236. https://doi.org/10.1016/j.procs.2022.01.156
Wahyuni, S., & Haniarsih, H. (2022). Sistem Pendukung Keputusan Dalam Penentuan Jurusan Siswa Smk Menerapkan Metode Saw. I N F O R M a T I K A, 13(2), 14. https://doi.org/10.36723/juri.v13i2.278
Wang, W. (2021). Model Construction and Research on Decision Support System for Education Management Based on Data Mining. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/9056947