ANALISIS SENTIMEN MASYARAKAT TERHADAP KASUS JUDI ONLINE MENGGUNAKAN DATA DARI MEDIA SOSIAL X PENDEKATAN NAIVE BAYES DAN SVM
Abstract
Research conducted by analyzing public sentiment related to online gambling cases using datasets from x social media using the naïve bayes method approach and support vector machine (SVM). The analysis phase starts with data gathering or crawling, followed by data labeling, data preprocessing, and ultimately method categorization. The dataset comprises 2,866 tweets, with 1,436 classified as positive (50.12%) and 1,429 as negative (49.88%). The data before to the classification process is partitioned into training data and testing data, including 70% training data and 30% testing data. The analysis with the SVM approach yielded a classification accuracy of 83%, whereas the naïve Bayes method achieved just 79%. Upon completion of the method classification process, the subsequent phase involves visualization and assessment. During the visualization step, bar plots, word clouds, and word frequencies derived from sentiment analysis calculations are shown, alongside a visualization of words from the dataset. The investigation indicates that the SVM approach outperforms Naive Bayes in sentiment classification. The benefit of SVM resides in its capability to manage data with elevated limits and accuracy, enhancing its efficiency in discerning positive and negative thoughts. The findings of this study demonstrate that SVM is better appropriate for data exhibiting complicated distributions, whereas the Naive Bayes approach yields suboptimal results. Thus, SVM can be proposed as a more appropriate and reliable approach for similar sentiment analysis in the future.
References
Alita, D., Fernando, Y., & Sulistiani, H. (2020). Implementasi Algoritma Multiclass SVM Pada Opini Publik Berbahasa Indonesia di Twitter. Jurnal Tekno Kompak, 14(2), 86–91. https://doi.org/10.33365/JTK.V14I2.792
Alita, D., & Isnain, A. R. (2020). Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random Forest Classifier. Jurnal Komputasi, 8(2), 50–58. https://doi.org/10.23960/KOMPUTASI.V8I2.2615
Ananda, D., & Suryono, R. R. (2024). Analisis Sentimen Publik Terhadap Pengungsi Rohingya di Indonesia dengan Metode Support Vector Machine dan Naïve Bayes. Jurnal Media Informatika Budidarma, 8(2), 748–757. https://doi.org/10.30865/MIB.V8I2.7517
Arischo, R. S., & Damayanti, D. (2024). Analisis Sentimen Pinjaman Online di Twitter dengan Metode Naive Bayes Classifier dan SVM. Jurnal Media Informatika Budidarma, 8(2), 1120–1130. https://doi.org/10.30865/MIB.V8I2.7406
Dongo, I., Cadinale, Y., Aguilera, A., Martínez, F., Quintero, Y., & Barrios, S. (2020). Web Scraping versus Twitter API: A Comparison for a Credibility Analysis. ACM International Conference Proceeding Series, 263–273. https://doi.org/10.1145/3428757.3429104
Febriani, S., & Sulistiani, H. (2021). Analisis Data Hasil Diagnoga Untuk Klasifikasi Gangguan Kepribadian Menggunakan Algoritma C4.5. Jurnal Teknologi Dan Sistem Informasi, 2(4), 89–95. https://doi.org/10.33365/JTSI.V2I4.1373
Hasiholan, A., Cholissodin, I., & Yudistira, N. (2022). Analisis Sentimen Tweet Covid-19 Varian Omicron pada Platform Media Sosial Twitter menggunakan Metode LSTM berbasis Multi Fungsi Aktivasi dan GLOVE. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(10), 4653–4661.
Husada, H. C., & Paramita, A. S. (2021). Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM). Teknika, 10(1), 18–26. https://doi.org/10.34148/TEKNIKA.V10I1.311
Ikasari, D., & Widiastuti, W. (2021). Sentiment Analysis Review Novel “Goodreads” Berbahasa Indonesia Menggunakan Naïve Bayes Classifier. Semnas Ristek (Seminar Nasional Riset Dan Inovasi Teknologi), 5(1). https://doi.org/10.30998/SEMNASRISTEK.V5I1.5040
Julianti, O. N., Suarna, N., & Prihartono, W. (2024). Penerapan Natural Language Processing Pada Analisis Sentimen Judi Online di Media Sosial Twitter. JATI (Jurnal Mahasiswa Teknik Informatika), 8(3), 2936–2941. https://doi.org/10.36040/JATI.V8I3.9613
Made, N., Astari, A. J., Gede, D., Divayana, H., & Indrawan, G. (2020). Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier. Jurnal Sistem Dan Informatika (JSI), 15(1), 27–29. https://doi.org/10.30864/JSI.V15I1.332
Muhammadin, A., & Sobari, I. A. (2021). Analisis Sentimen Pada Ulasan Aplikasi Kredivo Dengan Algoritma SVM dan NBC. Reputasi: Jurnal Rekayasa Perangkat Lunak, 2(2), 85–91. https://doi.org/10.31294/REPUTASI.V2I2.785
Nabila, Z., Isnain, A. R., Permata, P., & Abidin, Z. (2021). Analisis Data Mining Untuk Clustering Kasus Covid-19 di Provinsi Lampung Dengan Algoritma K-Means. Jurnal Teknologi Dan Sistem Informasi, 2(2), 100–108. https://doi.org/10.33365/JTSI.V2I2.868
Oktavia, D., Ramadahan, Y. R., & Minarto, M. (2023). Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM). KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(1), 407–417. https://doi.org/10.30865/KLIK.V4I1.1040
Pramudita, D. A., & Musdholifah, A. (2020). GSA to Obtain SVM Kernel Parameter for Thyroid Nodule Classification. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 14(1), 11–22. https://doi.org/10.22146/IJCCS.41215
Rachman, F. F., & Pramana, S. (2020). Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter. Indonesian of Health Information Management Journal (INOHIM), 8(2), 100–109. https://doi.org/10.47007/INOHIM.V8I2.223
Rahmansyah, A. I., & Darwis, D. (2020). Sistem Informasi Akuntansi Pengendalian Internal Terhadap Penjualan (Studi Kasus : CV. Anugrah PS). Jurnal Teknologi Dan Sistem Informasi, 1(2), 42–49. https://doi.org/10.33365/JTSI.V1I2.388
Rakhmah, A. H., & Putri, T. A. (2019). Analisis Sentimen Terhadap Pasangan Calon Presiden 2019 Pada Media Sosial Twitter. Jurnal lentera ICT, 5(1), 1–11.
Safira, A., & Hasan, F. N. (2023). Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier. ZONAsi: Jurnal Sistem Informasi, 5(1), 59–70. https://doi.org/10.31849/ZN.V5I1.12856
Setiawan, A., & Suryono, R. R. (2024). Analisis Sentimen Ibu Kota Nusantara menggunakan Algoritma Support Vector Machine dan Naïve Bayes. Edumatic: Jurnal Pendidikan Informatika, 8(1), 183–192. https://doi.org/10.29408/EDUMATIC.V8I1.25667
Styawati, S., & Mustofa, K. (2019). A Support Vector Machine-Firefly Algorithm for Movie Opinion Data Classification. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 13(3), 219–230. https://doi.org/10.22146/IJCCS.41302
Sulistiani, H., Darwis, D., Shinta, D., Silaen, M., Marlyna, D., Akuntansi, S. I., & Informasi, S. (2020). Pengembangan Media Pembelajaran Akuntansi Berbasis Multimedia (Studi Kasus: SMA Bina Mulya Gading Rejo, Pringsewu). Jurnal Komputer Dan Informatika, 15(1), 127–136.
Syah, H., & Witanti, A. (2022). Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Sistem Informasi Dan Informatika (Simika), 5(1), 59–67. https://doi.org/10.47080/simika.v5i1.1411
Tasya Jadidah, I., Milyarta Lestari, U., Alea Amanah Fatiha, K., Riyani, R., Ariesty Wulandari, C., Studi Pendidikan Guru Madrasah Ibtidaiyah, P., Islam Negeri Raden Fatah Palembang, U., & H Zainal Abidin Fikri, J. K. (2023). Analisis maraknya judi online di Masyarakat. Jurnal Ilmu Sosial Dan Budaya Indonesia, 1(1), 20–27. https://doi.org/10.61476/8XVGDB22
Tineges, R., Triayudi, A., & Sholihati, I. D. (2020). Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM). Jurnal Media Informatika Budidarma, 4(3), 650–658. https://doi.org/10.30865/MIB.V4I3.2181
Wibowo, A., Noor Hasan, F., Akbar Ramadhan, L., Nurhayati, R., & Arief Wibowo, dan. (2022). Analisis Sentimen Opini Masyarakat Terhadap Keefektifan Pembelajaran Daring Selama Pandemi COVID-19 Menggunakan Naïve Bayes Classifier. Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi, 4, 239–248. https://doi.org/10.35814/ASIIMETRIK.V4I1.3577
Wibowo, R. H., & Ikhsan, M. (2020). Penegakan Hukum terhadap Penyalahgunaan Aplikasi yang Bermuatan Perjudian Online di Dunia Maya oleh Polresta Surakarta. Prosiding University Research Colloquium, 179–190.
Wongkar, M., & Angdresey, A. (2019). Sentiment Analysis Using Naive Bayes Algorithm Of The Data Crawler: Twitter. Proceedings of 2019 4th International Conference on Informatics and Computing, ICIC 2019. https://doi.org/10.1109/ICIC47613.2019.8985884
Yana Siregar, L., Irwan Padli Nasution Prodi Manajemen, M., & Negeri Islam Sumatera Utara, U. (2020). Perkembangan Teknologi Informasi Terhadap Peningkatan Bisnis Online. Hirarki : Jurnal Ilmiah Manajemen Dan Bisnis, 2(1), 71–75. https://doi.org/10.30606/hjimb