PERBANDINGAN METODE NAÏVE BAYES DAN SVM UNTUK SENTIMEN ANALISIS MASYARAKAT TERHADAP SERANGAN RANSOMWARE PADA DATA KIP-K

  • Nabil Safiq Ramadan Universitas Teknokrat Indonesia
  • Dedi Darwis Universitas Teknokrat Indonesia
Keywords: Kip-K, Naive Bayes, Ransomware, SVM, Sentiment Analysis

Abstract

This research examines ransomware attacks on KIP-K data by analyzing the opinions of Social Media X users, using the naïve bayes classifier (NBC) and support vector machine (SVM) methods. The rapid development of technology not only brings great benefits but also increases the risk of digital attacks by certain parties. One example is a ransomware attack that caused a KIP-K data leak. In this study, sentiment analysis was applied to identify public opinions or responses obtained from Social Media X, with the help of python programming and google colab. Of the total 2,648 raw data collected, pre-processing was carried out resulting in 1,738 cleaned data. The study compared two methods, namely Naïve Bayes and Support Vector Machine, to determine what method is more effective in analyzing public sentiment related to ransomware attacks on KIP-K data. The focus of this study is to understand the percentage of Social Media X users' comments and responses related to the KIP-K ransomware taken from media sosial X. The stages of sentiment analysis in this study include crawling, labeling, preprocessing, method classification, and visualization. Before the classification process was carried out, the data was divided into two parts, namely 30% for test data and 70% for training data. Data labeling resulted in 1,313 negative data, 957 positive data and 377 neutral data. The classification results show that the NBC method has an accuracy of 70%, while the SVsM achieves an accuracy of 88%. Based on these results, SVM is proven to be superior in data analysis compared to NBC, especially for big data.

References

Amilia, A. A., Ans’harikhu, P., Alfan, M., Bimantara, A., Suciani, L., Yanuar, A., & Rahmawati, P. (2020). Gerakan Ayo Kuliah Program Keluarga Harapan untuk Memotivasi Siswa Melanjutkan Pendidikan ke Perguruan Tinggi. Community Empowerment, 5(3), 177–185. https://doi.org/10.31603/CE.3986
Amrullah, A. Z., Sofyan Anas, A., Adrian, M., & Hidayat, J. (2020). Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square. Jurnal Bumigora Information Technology (BITe), 2(1), 40–44. https://doi.org/10.30812/BITE.V2I1.804
Anjelina, C. D. (2024). Data 282 Layanan Kementerian/Lembaga Hilang Usai Diserang Ransomware, Ini Kata Ahli. Kompas.Com. https://www.kompas.com/tren/read/2024/06/28/193000265/data-282-layanan-kementerian-lembaga-hilang-usai-diserang-ransomware-ini?page=all#:~:text=Editor&text=kompas.com - Sepekan berlalu sejak,negara hilang dan sulit dikembalikan.
Apriani, R., & Gustian, D. (2019). Analisis Sentimen Dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia. Jurnal Rekayasa Teknologi Nusa Putra, 6(1), 54–62. https://doi.org/10.52005/REKAYASA.V6I1.86
Cindo, M., Rini, D. P., & Ermatita, E. (2019). Literatur Review: Metode Klasifikasi Pada Sentimen Analisis. Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 1(1), 66–70.
Darwis, D., Siskawati, N., & Abidin, Z. (2021). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional. Jurnal Tekno Kompak, 15(1), 131–145. https://doi.org/10.33365/JTK.V15I1.744
Dias Saputri, A., Pratama -, A. R., Pradiatiningtyas, D., Bayu Dewa, C., Ayu Safitri, L., Ajeng Kristiyanti, D., Andini Putri, D., Indrayuni, E., Nurhadi, A., & Hairul Umam, A. (2020). E-Wallet Sentiment Analysis Using Naïve Bayes and Support Vector Machine Algorithm. Journal of Physics: Conference Series, 1641(1), 012079. https://doi.org/10.1088/1742-6596/1641/1/012079
Dirjen, S. K., Riset, P., Pengembangan, D., Dikti, R., Nugroho, A., Bimo Gumelar, A., Sooai, A. G., Sarvasti, D., & Tahalele, P. L. (2020). Perbandingan Performansi Algoritma Pengklasifikasian Terpandu Untuk Kasus Penyakit Kardiovaskular. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(5), 998–1006. https://doi.org/10.29207/RESTI.V4I5.2316
Fatmawati, N. (2021). Pengaruh Positif dan Negatif Media Sosial Terhadap Masyarakat. Kementrian Keuangan Republik Indonesia. https://www.djkn.kemenkeu.go.id/kpknl-semarang/baca-artikel/14366/Pengaruh-Positif-dan-Negatif-Media-Sosial-Terhadap-Masyarakat.html
Ferdiana, R., Jatmiko, F., Purwanti, D. D., Sekar, A., Ayu, T., & Dicka, W. F. (2019). Dataset Indonesia untuk Analisis Sentimen. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 8(4), 334–339.
Handayanto, R. T., Herlawati, H., Atika, P. D., Khasanah, F. N., Yusuf, A. Y. P., & Septia, D. Y. (2021). Analisis Sentimen Pada Situs Google Review dengan Naïve Bayes dan Support Vector Machine. Jurnal Komtika (Komputasi Dan Informatika), 5(2), 153–163. https://doi.org/10.31603/KOMTIKA.V5I2.6280


Herlinda, V., Darwis, D., & Dartono, D. (2021). Analisis clustering Untuk Recredesialing Fasilitas Kesehatan Menggunakan Metode Fuzzy C-Means. Jurnal Teknologi Dan Sistem Informasi, 2(2), 94–99. https://doi.org/10.33365/JTSI.V2I2.890
Lumbanraja, F. R., Sani, R. S., Kurniawan, D., & Irawati, A. R. (2019). Implementasi Metode Support Vector Machine Dalam Prediksi Persebaran Demam Berdarah di Kota Bandar Lampung.
Nopriandi, H., Aprizal, A., & Chairani, S. (2023). Sistem Pendukung Keputusan Seleksi Calon Penerima Beasiswa Kartu Indonesia Pintar Kuliah (Kip-K) Di Universitas Islam Kuantan Singingi. Jurnal Teknologi Dan Open Source, 41–54. https://doi.org/10.36378/JTOS.V6I1.2698
Rahat, A. M., Kahir, A., & Masum, A. K. M. (2020). Comparison of Naive Bayes and SVM Algorithm based on Sentiment Analysis Using Review Dataset. Proceedings of the 2019 8th International Conference on System Modeling and Advancement in Research Trends, SMART 2019, 266–270. https://doi.org/10.1109/SMART46866.2019.9117512
Romadoni, F., Umaidah, Y., Nurina Sari, B., & Ilmu Komputer, F. (2020). Text Mining Untuk Analisis Sentimen Pelanggan Terhadap Layanan Uang Elektronik Menggunakan Algoritma Support Vector Machine. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(2), 247–253. https://doi.org/10.32736/SISFOKOM.V9I2.903
Sharazita Dyah Anggita, & Ikmah. (2020). Algorithm Comparation of Naive Bayes and Support Vector Machine based on Particle Swarm Optimization in Sentiment Analysis of Freight Forwarding Services. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(2), 362–369. https://doi.org/10.29207/resti.v4i2.1840
Syah, H., & Witanti, A. (2022). Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twetter Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Sistem Informasi Dan Informatika (Simika), 5(1), 59–67. https://doi.org/10.47080/simika.v5i1.1411
Winston Talakua, M., Tomasouw, B. P., Ilwaru, V. Y. I., Talakua, M. W., & Tomasouw, B. P. (2023). Design Of Kip Kuliah Selection System And Recipient Determination Using Support Vector Machine (SVM). BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(3), 1803–1814. https://doi.org/10.30598/BAREKENGVOL17ISS3PP1803-1814
Zamachsari, F., Vangeran Saragih, G., Susafa’ati, & Gata, W. (2020). Analysis of Sentiment of Moving a National Capital with Feature Selection Naive Bayes Algorithm and Support Vector Machine. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(3), 504–512. https://doi.org/10.29207/RESTI.V4I3.1942
Published
2024-12-31
How to Cite
Ramadan, N., & Darwis, D. (2024). PERBANDINGAN METODE NAÏVE BAYES DAN SVM UNTUK SENTIMEN ANALISIS MASYARAKAT TERHADAP SERANGAN RANSOMWARE PADA DATA KIP-K. Jurnal Sistem Informasi Dan Informatika (Simika), 8(1), 12-23. https://doi.org/10.47080/simika.v8i1.3621