PREDICTING REVENUE OF SHARIA BANKING TRANSACTIONS USING RNN, LSTM, GRU, DECISION TREE, AND QSPM (CASE STUDY: PT BANK TBV SYARIAH)

  • Septian Fakhrudin Arianto President University
  • Hasanul Fahmi President University
Keywords: Decision Tree, GRU, LSTM, QSPM, RNN

Abstract

The banking business will continue to grow significantly along with the increase in the number of transactions carried out by customers through the channels provided by the bank. The variety of products and features offered by PT Bank TBV Syariah to customers means that resources are not optimal. Hence, the bank's revenue growth target still needs to be achieved. This research aims to predict transactions that can affect bank revenues by using transaction data sources for the period January 2022 to February 2024 and which products and features need to be optimized so that it is hoped that banks can run their business appropriately and according to targets. The methods in this research are the RNN, LSTM, GRU, and Decision Tree methods. To enrich information, this research adds QSPM-based strategy analysis using SWOT that the company previously defined. The expected results are to prove the effectiveness of the model used in predicting PT Bank TBV Syariah transaction data to produce MAE, MSE, and RMSE with the lowest values​​, as well as recommendations that PT Bank TBV Syariah must carry out to increase revenue. This research is expected to provide accurate and effective predictions for projecting PT Bank TBV Syariah transaction data, support strategic decision-making, and produce recommendations for significantly increasing bank income.

References

Abumohsen, M., Owda, A. Y., & Owda, M. (2023). Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms. Energies, 16(5). https://doi.org/10.3390/en16052283

Amiruddin, M. H., Andesta, D., & Widyaningrum, D. (2020). Pendekatan Metode SWOT dan QSPM Pada Strategi Pemasaran Produk Petis Udang (Studi Kasus : UD. Sahabat Barokah di Desa Sungonlegowo). JUSTI (Jurnal Sistem Dan Teknik Industri, I(4).

Lasatira, G. S., Hartomo, K. D., & Sembiring, I. (2023). Analisis Sentimen Terhadap Pengaruh Minat Belanja Berdasarkan Komentar di Marketplace Menggunakan Metode Recurrent Neural Network (RNN). Jurnal Sistem Informasi Bisnis, 13(2), 112–119. https://doi.org/10.21456/vol13iss2pp112-119

Nilsen, A. (2022). Perbandingan model RNN, model LSTM, dan model GRU dalam memprediksi harga saham-saham LQ45. Jurnal Statistika Dan Aplikasinya, 6(1). https://doi.org/10.21009/JSA.06113

Panatagama, A. (2023, July 9). Data Exploration: tahapan, teknik, dan tipsnya. Terralogiq. https://terralogiq.com/data-exploration

PT Bank TBV Syariah. (2022). Surat Keputusan direksi tentang organisasi kantor pusat dan distribusi pemasaran PT Bank TBV Syariah. PT Bank TBV Syariah.

PT Bank TBV Syariah. (2023a). Annual Report 2022: digital innovation for a broader reach. https://www.megasyariah.co.id/id/tentang-kami/laporan-keuangan-perusahaan/laporan-tahunan

PT Bank TBV Syariah. (2023b). Rencana Bisnis Bank PT Bank TBV Syariah 2024-2026.

PT Bank TBV Syariah. (2023c, July 7). Company profile of PT Bank TBV Syariah. PT Bank TBV Syariah. https://www.megasyariah.co.id/id/tentang-kami/profil-perusahaan/sejarah-perusahaan

Revita, T. (2022, November 30). Koefisien Korelasi: pengertian, rumus, dan contohnya. DailySocial. https://dailysocial.id/post/koefisien-korelasi

Rong, J., Wang, D., Zhang, B., & Wang, Y. (2022). Research on the Forecast of the Combined GRU Model Based on the Optimized Bat Algorithm in the Bank Transaction Volume. Mobile Information Systems, 2022. https://doi.org/10.1155/2022/6837395

Rura, G., Findi, M., & Suprayitno, G. (2023). Value Creation Strategy in Micro Products of Bank Syariah Indonesia (Case Study of Bank Syariah Indonesia) Jakarta Region period 2021-2022. Manajemen IKM, 18(1), 11–17. https://doi.org/10.29244/mikm.18.1.11-17

Saputra, I., & Kristiyanti, D. A. (2022). Machine Learning Untuk Pemula (1st ed., Vol. 1). Informatika.

Setiawan, A. (2024, January 13). Korelasi Pearson: Memahami dan Menggunakan dalam Analisis Data Statistika. Smartstat. https://www.smartstat.info/materi/statistika/korelasi/korelasi-pearson.html

Sianturi, T. B., Cholissodin, I., & Yudistira, N. (2023). Penerapan Algoritma Long Short-Term Memory (LSTM) berbasis Multi Fungsi Aktivasi Terbobot dalam Prediksi Harga Ethereum. Pengembangan Teknologi Informasi Dan Ilmu Komputer, 7(3), 1101–1107. http://j-ptiik.ub.ac.id

Siregar, M. (2020). Analisis strategi pemasaran menggunakan metode SWOT dan Quantitative Strategic Planning Matrix (QSPM) (studi kasus: Toko Cahaya Fajar) [Skripsi, Universitas islam Negeri Sultan Syarif kasim Riau]. http://repository.uin-suska.ac.id/id/eprint/30099

Sugiyono, S. (2021). Metode Penelitian Kuantitatif, Kualitatif, dan R & D (3rd ed.). Alfabeta.

Widiyarini, W., & Hunusalela, Z. F. (2019). Perencanaan strategi pemasaran menggunakan analisis SWOT dan QSPM dalam upaya peningkatan penjualan PT Primavista Solusi. JABE (Journal of Applied Business and Economic), 5(4), 384–397. https://doi.org/10.30998/jabe.v5i4.4186

Yulianingsih, Y., Akhirina, T. Y., & Niswati, Z. (2022). Pengembangan Model RNN LSTM pada Prediksi Produksi Daging Sapi dalam Perencanaan Pembangunan Nasional. Faktor Exacta, 15(3), 200. https://doi.org/10.30998/faktorexacta.v15i3.12820
Published
2024-08-05
How to Cite
Arianto, S., & Fahmi, H. (2024). PREDICTING REVENUE OF SHARIA BANKING TRANSACTIONS USING RNN, LSTM, GRU, DECISION TREE, AND QSPM (CASE STUDY: PT BANK TBV SYARIAH). Jurnal Sistem Informasi Dan Informatika (Simika), 7(2), 277-290. https://doi.org/10.47080/simika.v7i2.3467