KLASIFIKASI TINGKAT KESEGARAN DAUN BAWANG MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS PENGOLAHAN CITRA DIGITAL

  • Andi Fitri Novianti Universitas Negeri Makassar
  • Muhammad Atthariq Universitas Negeri Makassar
  • Juliano Nufiansyach Dini Universitas Negeri Makassar
  • Andi Baso Kaswar Universitas Negeri Makassar
  • Jessica Crisfin Lapendy Universitas Negeri Makassar
Keywords: Artificial Neural Networks, Classification, Freshness, Green Onions, Image Processing

Abstract

Green onions, commonly used in Indonesian cuisine, have significant agricultural potential. Despite high production, their quality, particularly freshness, is traditionally evaluated visually, leading to inconsistent and subjective results. This study aims to develop an objective and accurate method for classifying the freshness of green onions using an Artificial Neural Network (ANN). Previous studies have employed ANN but have not specifically targeted the freshness classification of leeks. The proposed method utilizes the color and texture features of green onions.The research methodology includes image acquisition, preprocessing, segmentation, morphology, feature extraction, and classification using ANN. A total of 300 images were acquired and categorized into three freshness levels: not fresh, less fresh, and fresh. During the training phase, 240 images were used, and 80 images were reserved for testing. The optimal feature combination identified includes HSV and LAB color features along with texture features (Contrast + Energy). The results demonstrated that the freshness classification of green onions achieved 100% accuracy in both training and testing phases. The training process, with 240 images, had a computation time of 142.684 seconds, while the testing process, with 80 images, took 35.648 seconds. These findings indicate that using ANN based on color and texture features is highly effective in determining the freshness level of green onions.

References

Aditya, M. R. V., Husni, N. L., Pratama, D. A., & Handayani, A. S. (2020). Penerapan Sistem Pengolahan Citra Digital Pendeteksi Warna pada Starbot. JURNAL TEKNIKA, 14(2), 185–191.
Agung, A. S., Dirgantara SR, A. F., Hersyam, M. S., Kaswar, A. B., & Andayani, D. D. (2023). Classification Of Tomato Quality Based On Color Features And Skin Characteristics Using Image Processing Based Artificial Neural Network. Jurnal Teknik Informatika (JUTIF), 4(5), 1021–1032. https://doi.org/10.52436/1.jutif.2023.4.5.780
Al Rivan, M. E., Rachmat, N., & Ayustin, M. R. (2020). Klasifikasi Jenis Kacang-Kacangan Berdasarkan Tekstur Menggunakan Jaringan Syaraf Tiruan. Jurnal Komputer Terapan, 6(1), 89–98. https://jurnal.pcr.ac.id/index.php/jkt/
Arini, Fahrianto, F., Agusta, A., & Muharam, A. T. (2015). Pendeteksian Posisi Plat Nomor Mobil Menggunakan Metode Morfologi Dengan Operasi Dilasi, Filling Holes, Dan Opening. JURNAL TEKNIK INFORMATIKA, 8(1), 10–15.
Dewi, W. K., Isnaini, S., Khasbullah, F., Yatmin, Y., & Syafiuddin, S. (2022). Respons Bawang Daun (Allium fistulosum L.) Akibat Pemberianpupuk Organik Cair Daun Lamtoro (Leucaena leucocephala) Berbagai Dosis Yang Diaplikasikan Pada Berbagai Waktu. Jurnal Agrotek Tropika, 10(4), 585–592. https://doi.org/10.23960/jat.v10i4.6275
Efran, F. A. P., Khairil, & Jumadi, J. (2022). Implementasi Metode K-Means Clustering Pada Segmentasi Citra Digital. Jurnal Media Infotama, 18(2), 291–301.
Fadjeri, A., Saputra, B. A., Adri Ariyanto, D. K., & Kurniatin, L. (2022). Karakteristik Morfologi Tanaman Selada Menggunakan Pengolahan Citra Digital. Jurnal Ilmiah SINUS, 20(2), 1. https://doi.org/10.30646/sinus.v20i2.601
Fera, A. R., Sumartono, G. H., & Tini, E. W. (2019). Pertumbuhan dan Hasil Tanaman Bawang Daun (Allium fistulosum L.) Pada Jarak Tanam Dan Pemotongan Bibit Yang Berbeda. The Growth and Yield of Spring Onion (Allium fistulosum L.) Using The Various Plant Spacing and The Seedlings Tuber Cutting. Jurnal Penelitian Pertanian Terapan, 19(1), 11–18. https://doi.org/10.25181/jppt.v19i1.783
Firlansyah, A., Kaswar, A. B., & Risal, A. A. N. (2021). Klasifikasi Tingkat Kematangan Buah Pepaya Berdasarkan Fitur Warna Menggunakan Jaringan Syaraf Tiruan. Techno Xplore: Jurnal Ilmu Komputer Dan Teknologi Informasi, 6(2), 55–60.
Habibah, N. U., Rosyady, P. A., & Pribadi, R. (2023). Analisis Indeks Masa Tubuh Berbasis Citra Digital Menggunakan Metode Body Surface Area. Jetri: Jurnal Ilmiah Teknik Elektro, 20(2), 135–152. https://doi.org/10.25105/jetri.v20i2.15398
Humaira B, N. I., Herman, M., Nurhikma, & Kaswar, A. B. (2021). Klasifikasi Tingkat Kualitas Dan Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan Jaringan Syaraf Tiruan. JESSI, 2(1), 18–23.
Kaswar, A. B., Risal, A. A. N., Fatiah, & Nurjannah. (2020). Klasifikasi Tingkat Kematangan Buah Markisa Menggunakan Jaringan Syaraf Tiruan Berbasis Pengolahan Citra Digital. JESSI, 1(1), 1–8.
Nabilla, P., Saputra, M. F., & Saputra, R. A. (2022). Perbandingan Ruang Warna Rgb, Hsv Dan Ycbcr Untuk Segmentasi Citra Ikan Kembung Menggunakan K-Means Clustering. JATI (Jurnal Mahasiswa Teknik Informatika), 6(2), 476–481.
Parinduri, S. K., Sihotang, A., Adelina, M. C., & Purnama, A. (2023). Analisis Jaringan Syaraf Tiruan Terhadap Klasifikasi Citra Daun Bunga Menggunakan Backpropagation. JURNAL DEVICE, 13(1), 1–7.
Rahmadewi, R., Efelina, V., & Purwanti, E. (2018). Identifikasi Jenis Tumbuhan Menggunakan Citra Daun Berbasis Jaringan Saraf Tiruan (Artificial Neural Networks). Jurnal Media Elektro, 7(2), 38–43.
Rasyid, M. R., Tahir, Z., & Syafaruddin, N. (2019). Digital Image Processing for Detecting Industrial Machine Work Failure with Quantization Vector Learning Method. Journal Pekommas, 4(2), 131–136. https://doi.org/10.30818/jpkm.2019.2040203
Rulaningtyas, R., Suksmono, A. B., Mengko, T. L. R., & Saptawati, G. A. P. (2015). Segmentasi Citra Berwarna dengan Menggunakan Metode Clustering Berbasis Patch untuk Identifikasi Mycobacterium Tuberculosis. Jurnal Biosains Pascasarjana, 17(1), 19–25.
Rumandan, R. J., Nuraini, R., Sadikin, N., & Rahmanto, Y. (2022). Klasifikasi Citra Jenis Daun Berkhasiat Obat Menggunakan Algoritma Jaringan Syaraf Tiruan Extreme Learning Machine. Journal of Computer System and Informatics (JoSYC), 4(1), 145–154. https://doi.org/10.47065/josyc.v4i1.2586
Susanto, A. (2019). Penerapan Operasi Morfologi Matematika Citra Digital Untuk Ekstraksi Area Plat Nomor Kendaraan Bermotor. Jurnal Pseudocode, 6(1), 49–57. www.ejournal.unib.ac.id/index.php/pseudocode
Tjondrowiguno, R. K., Intan, R., & Gunadi, K. (2017). Aplikasi Pengenalan Pola Batik Dengan Menggunakan Metode Gray-Level Cooccurrence Matrix. JURNAL INFRA, 5(1), 1–6.
Widodo, R., Widodo, A. W., & Supriyanto, A. (2018). Pemanfaatan Ciri Gray Level Co-Occurrence Matrix (GLCM) Citra Buah Jeruk Keprok (Citrus reticulata Blanco) untuk Klasifikasi Mutu. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(11), 5769–5776. http://j-ptiik.ub.ac.id
Yani, I., Siregar, F. F., & Sitorus, D. S. T. (2019). Identifikasi Plat Mobil Dengan Menggunakan Metode Jaringan Syaraf Tiruan Kohonen Pada Sistem Parkir Cerdas. SEMINAR NASIONAL TEKNOKA, 4, 26–31. https://doi.org/10.22236/teknoka.v%vi%i.4205
Published
2024-07-31
How to Cite
Novianti, A., Atthariq, M., Dini, J., Kaswar, A., & Lapendy, J. (2024). KLASIFIKASI TINGKAT KESEGARAN DAUN BAWANG MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS PENGOLAHAN CITRA DIGITAL. Jurnal Sistem Informasi Dan Informatika (Simika), 7(2), 223-237. https://doi.org/10.47080/simika.v7i2.3378