IDENTIFIKASI JENIS MANGGA BERDASARKAN CIRI DAUN MENGGUNAKAN METODE CNN
Abstract
Mango, originating from India and bearing the scientific name Mangifera indica L, spread to Southeast Asia, including Malaysia and Indonesia. Rich in vitamins A and C, mango boosts immunity and exhibits a wide genetic diversity. From the genetic diversity and types of mango leaves, many people do not understand well about the types of mangoes based on mango leaves. Therefore it is necessary to identify the type of mango based on the leaves so that people can easily understand the type of a mango. The Convolutional Neural Network (CNN) method proves effective in identifying plants based on morphological features. CNN, a development from Multilayer Perceptron (MLP), is employed in testing using Teachable Machine with 60 mango leaf images, divided into 3 classes. Across 4 different classifications, the average confusion matrix shows CNN accuracy at 83.30%, precision at 94.43%, and recall at 88.28%. With CNN, the accuracy in identifying mango leaf characteristics improves.
References
Charli, F., Syaputra, H., Akbar, M., Sauda, S., & Panjaitan, F. (2020). Implementasi Metode Faster Region Convolutional Neural Network (Faster R-CNN) Untuk Pengenalan Jenis Burung Lovebird. Journal of Information Technology Ampera, 1(3), 185–197.
Deni Hidayat. (2022). Klasifikasi Jenis Mangga Berdasarkan Bentuk Dan Tekstur Daun Menggunakan Metode Convolutio Nalneural Network (CNN). INTECOMS (Journal of Information Technology and Computer Science), 5(1), 98-103.
Harahap, M., Em Manuel Laia, Lilis Suryani Sitanggang, Melda Sinaga, Daniel Franci Sihombing, & Amir Mahmud Husein. (2022). Deteksi Penyakit Covid-19 Pada Citra X-Ray Dengan Pendekatan Convolutional Neural Network (CNN). Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(1), 70–77.
Maulana, F. F., & Rochmawati, N. (2020). Klasifikasi Citra Buah Menggunakan Convolutional Neural Network. Journal of Informatics and Computer Science (JINACS), 1(02), 104–108.
Nihayatul Husna, I., Ulum, M., Kurniawan Saputro, A., Haryanto, Tri Laksono, D., & Neipa Purnamasari, D. (2022). Rancang Bangun Sistem Deteksi Dan Perhitungan Jumlah Orang Menggunakan Metode Convolutional Neural Network (CNN). Seminar Nasional Fortei Regional 7, 5(1), 1–6.
Pratiwi, H. A., Cahyanti, M., & Lamsani, M. (2021). Implementasi Deep Learning Flower Scanner Menggunakan Metode Convolutional Neural Network. Sebatik, 25(1), 124–130.
Satwikayana, S., Adi Wibowo, S., & Vendyansyah, N. (2021). Sistem Presensi Mahasiswa Otomatis Pada Zoom Meeting Menggunakan Face Recognition Dengan Metode Convulitional Neural Network Berbasis Web. JATI (Jurnal Mahasiswa Teknik Informatika), 5(2), 785–793.
Sembiring, M. B., Rahmi, D., Maulina, M., Tari, V., Rahmayanti, R., & Suwardi, A. B. (2020). Identifikasi Karakter Morfologi dan Sensoris Kultivar Mangga (Mangifera Indica L.) di Kecamatan Langsa Lama, Aceh, Indonesia. Jurnal Biologi Tropis, 20(2), 179–184.
Syefudin, Azmi, M. N., Gunawan (2023). Analisis Pengaruh Dimensi Gambar Pada Klasifikasi Motif Batik Dengan Menggunakan Convolutional Neural Network. Jurnal Sistem Informasi dan Informatika (Simika), 6(2), 190–198.
Yati, R., Rohana, T., & Pratama, A. R. (2023). Klasifikasi Jenis Mangga Menggunakan Algoritma Convolutional Neural Network. Jurnal Media Informatika Budidarma, 7(3), 1265–1275.