PREDIKSI KELULUSAN MAHASISWA TEKNIK INFORMATIKA UNIVERSITAS BANTEN JAYA MENGGUNAKAN ALGORITMA NEURAL NETWORK

  • Rudianto Rudianto Universitas Banten Jaya
  • Raden Kania Universitas Banten Jaya
  • Tifani Intan Solihati Universitas Banten Jaya
Keywords: Artificial Neural Network, Multilayer Cognition, Inverse Propagation, Prediction Accuracy

Abstract

The university strives to provide relevant knowledge. One way the government can use it is to measure the quality of the institution by the number of graduates. The higher the pass rate, the higher the quality of training, which can have a positive impact on the certifications awarded by BAN-PT. This allows researchers to see how research is being conducted at the University of Banten Jaya. To predict graduation rates, students can use a type of artificial neural network algorithm commonly known as neural networks. Artificial neural networks are machine learning techniques developed from Multilayer Perceptron (MLP) and designed to process two-dimensional data. Neural network algorithms belong to the type of deep neural network imaging used. There are several types of neural network techniques. That is, the steps of forward and reverse propagation training. Neural networks are similar to MLPs, but in neural networks each neuron is represented in two dimensions, as opposed to MLP, where each neuron has only one dimension. The results of student graduation in a timely manner and is expected to provide information and can provide input to universities in formulating policies for future improvements.

References

Amoo, M. A., Alaba, O. B., & Usman, O. L. (2018). Predictive modelling and analysis of academic performance of secondary school students: Artificial Neural Network approach. International Journal of Science and Technology Education Research, 9(1), 1–8. https://doi.org/10.5897/ijster2017.0415

Ariansyah, T., & Yakub, S. (2021). Implementasi Data Mining Untuk Mengestimasi Kebutuhan Persediaan Roti Panggang Di Junction Cafe Dengan Menggunakan Metode Regresi Linier Berganda. 1(1), 1–8.

Kartini, D. (2017). PROSIDING seminar nasional sisfotek Penerapan Data Mining dengan Algoritma Neural Network ( Backpropagation ) Untuk Prediksi Lama Studi Mahasiswa. 3584.

Masrizal, & Hadiansa, A. (2017). Prediksi Jumlah Lulusan Mahasiswa STMIK Dumai Menggunakan Jaringan Syaraf Tiruan. 9(2), 9–14.

Pratama, Fandy, Ardian. (2019). Optimalisasi Neural Network Dengan Particle Swarm Optimization Untuk Prediksi Kelulusan Mahasiswa. 1(2), 62–67.

Rohman, A., & Rochcham, M. (2019). KOMPARASI METODE KLASIFIKASI DATA MINING UNTUK PREDIKSI Abstrak. 5(1), 23–29.

Rohmawan, E. P. (2013). Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Desicion Tree dan Artificial Neural Network. 21–30.

Syahrin, A. (2013). Implementasi algoritma k-means untuk klasterisasi mahasiswa berdasarkan prediksi waktu kelulusan skripsi.

Widodo, A. P., Sarwoko, E. A., & Firdaus, Z. (2015). AKURASI MODEL PREDIKSI METODE BACKPROPAGATION. 79–84.

Witten, I. (2011). Data Mining Practical learning Tools and Techniques (Thrid Edit). Elsevier.

Zainuddin, M. (2019). Perbandingan 4 Algoritma Berbasis Particle Swarm Optimization ( pso ) Untuk Prediksi Kelulusan Tepat Waktu Mahasiswa. 13(1), 1–12.

Published
2022-08-31
How to Cite
Rudianto, R., Kania, R., & Solihati, T. (2022). PREDIKSI KELULUSAN MAHASISWA TEKNIK INFORMATIKA UNIVERSITAS BANTEN JAYA MENGGUNAKAN ALGORITMA NEURAL NETWORK. Jurnal Sistem Informasi Dan Informatika (Simika), 5(2), 193-200. https://doi.org/10.47080/simika.v5i2.2123

Most read articles by the same author(s)

<< < 1 2