Klasifikasi Penyakit Paru-Paru Dengan Citra X-Ray Menggunakan Metode Convolutional Neural Network
DOI:
https://doi.org/10.5555/23mj8c35Abstract
This research explores the utilization of Convolutional Neural Network (CNN) methods to classify lung diseases, including COVID-19, Tuberculosis, and Pneumonia. The focus is on developing a CNN model for lung disease classification using a dataset that has undergone augmentation. Data augmentation is performed through various transformations such as rotation, horizontal_flip, vertical_flip, shear_range, and zoom_range. The dataset is divided into 70% for training, 20% for validation, and 10% for testing, totaling 2200 data points. The results indicate that the constructed model successfully achieved an accuracy of 96.49% in the training process and 95% on the testing data. This research demonstrates the potential of CNN in classifying lung diseases quite effectively after model training.
Downloads
References
Ersyad, M. Z., Ramadhani, K. N., & Arifianto, A. (2020). Pengenalan Bentuk Tangan Dengan Convolutional Neural Network (Cnn). EProceedings of Engineering, 7(2).
Fauzi, S., Eosina, P., & Laxmi, G. F. (2019). Implementasi Convolutional Neural Network Untuk Identifikasi Ikan Air Tawar. Seminar Nasional Teknologi Informasi, 2, 163–167. http://prosiding.uika-bogor.ac.id/index.php/semnati/article/view/286
Nugroho, P. A., Fenriana, I., & Arijanto, R. (2020). Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia. Algor, 2(1).
Pakpahan, R. (2021). Analisa Pengaruh Implementasi Artificial Intelligence Dalam Kehidupan Manusia. JISICOM (Journal of Information System, Informatics and Computing), 5(2), 506–513.
Prasmatio, R. M., Rahmat, B., & Yuniar, I. (2020). Deteksi dan pengenalan ikan menggunakan algoritma Convolutional Neural Network. Jurnal Informatika Dan Sistem Informasi, 1(2), 510–521.
Pratiwi, B. P., Handayani, A. S., & Sarjana, S. (2020). Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix. Jurnal Informatika Upgris, 6(2).
Prayogi, P. I., Hilman, F., & Tomhert, S. S. (2022). Klasifikasi Penyakit Pneumonia Dan Covid-19 Berbasis Citra X-Ray Menggunakan Arsitektur Deep Residual Network. E-Proceeding of Engineering, 9(4).
Rasyid, A., & Heryawan, L. (2023). Klasifikasi Penyakit Tuberculosis (TB) Organ Paru Manusia Berdasarkan Citra Rontgen Thorax Menggunakan Metode Convolutional Neural Network (CNN). Jurnal Manajemen Informasi Kesehatan Indonesia (JMIKI), 11(1). https://doi.org/10.33560/jmiki.v11i1.484
Rochmawanti, O., Utaminingrum, F., & Bachtiar, F. A. (2021). Analisis Performa Pre-Trained Model Convolutional Neural Network dalam Mendeteksi Penyakit Tuberkulosis. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(4). https://doi.org/10.25126/jtiik.2021844441
Sipayung, E. M. (2023). Klasifikasi Image Jenis Kayu pada Furnitur dengan Convolutional Neural Network. Jurnal Telematika, 18(2), 82–87.
Sulaiman, D. C., & Mulyana, T. M. S. (2023). Web-Based Writing Learning Application of Basic Hanacaraka Using Convolutional Neural Network Method. Ultimatics: Jurnal Teknik Informatika, 15(1), 28–34.
Thenata, A. P., & Suryadi, M. (2022). Machine Learning Prediction of Anxiety Levels in the Society of Academicians During the Covid-19 Pandemic. Jurnal Varian, 6(1), 81–88.
Zaharchuk, G., Gong, E., Wintermark, M., Rubin, D., & Langlotz, C. P. (2018). Deep learning in neuroradiology. In American Journal of Neuroradiology (Vol. 39, Issue 10). https://doi.org/10.3174/ajnr.A5543
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Daniel Kusuma, Dionisia Bhisetya Rarasati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
In order to be accepted and published by Journal Agribest, author(s) submitting the article manuscript should complete all the review stages. By submitting the manuscript the author(s) agreed to these following terms:
- The copyright of received articles shall be assigned to Journal Agribest as the publisher of the journal. The intended copyright includes the right to publish articles in various forms (including reprints). Journal Agribest maintain the publishing rights to the published articles.
- Authors are permitted to disseminate published article by sharing the link/DOI of the article at Journal Agribest. authors are allowed to use their articles for any legal purposes deemed necessary without written permission from Journal Agribest with an acknowledgement of initial publication to this journal.
- Users/public use of this website will be licensed to Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.