Analisis Prediksi Kelulusan Mahasiswa Universitas Sultan Ageng Tirtayasa Menggunakan Algoritma Machine Learning dan Feature Selection

  • Royan Habibie Sukarna Universitas Sultan Ageng Tirtayasa
  • Holilah Holilah Universitas Sultan Ageng Tirtayasa
  • Fitri Damyati Universitas Sultan Ageng Tirtayasa
  • Mohamad Hilman universitas sultan ageng tirtayasa
Keywords: KNN, Machine Learning, Feature Selection, SVM, Logistic Regression

Abstract

The KNN algorithm with feature selection achieved the highest accuracy of 74.44% and an Area Under the Curve (AUC) of 0.8212. This model showed a balanced accuracy improvement compared to its performance using the dataset with complete features, which had an accuracy of 72.83% and an AUC of 0.8071. Similarly, the Random Forest model with feature selection showed an accuracy of 72.00% and an AUC of 0.7741, compared to an accuracy of 70.52% and an AUC of 0.7672 with all features. The SVM model with feature selection also improved, reaching an accuracy of 72.28% and an AUC of 0.7812, compared to an accuracy of 69.80% and an AUC of 0.774 with all features. Logistic Regression showed minimal change, with an accuracy of 69.14% and an AUC of 0.7644 after feature selection, compared to an accuracy of 69.25% and an AUC of 0.7645 with all features. 

References

Aditya Nirwana, Sudarmiatin, & Melany. (2023). Implementation of Artificial Intelligence in Digital Marketing Development: a Thematic Review and Practical Exploration. Jurnal Manajemen Bisnis, Akuntansi Dan Keuangan, 2(1), 85–112. https://doi.org/10.55927/jambak.v2i1.4034
Awalina, E. F. L., & Rahayu, W. I. (2023). Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail. Jurnal Teknologi Dan Informasi, 13(2), 122–137. https://doi.org/10.34010/jati.v13i2.10090
Du, X., Yang, J., Hung, J. L., & Shelton, B. (2020). Educational data mining: a systematic review of research and emerging trends. Information Discovery and Delivery, 48(4), 225–236. https://doi.org/10.1108/IDD-09-2019-0070
Namoun, A., & Alshanqiti, A. (2021). Predicting student performance using data mining and learning analytics techniques: A systematic literature review. Applied Sciences (Switzerland), 11(1), 1–28. https://doi.org/10.3390/app11010237
Situmorang, S. (2023). Analisis Kinerja Algoritma Machine Learning Dalam Deteksi Anomali Jaringan (LAZY LEARNING. Jurnal Matematika Dan Ilmu Pengetahuan Alam, 1(4), 259–269. https://doi.org/10.59581/konstanta.v1i4.1722
Sukarna, R. H., & Ansori, Y. (2022). Implementasi Data Mining Menggunakan Metode Naive Bayes Dengan Feature Selection Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu. Jurnal Ilmiah Sains Dan Teknologi, 6(1), 50–61. https://doi.org/10.47080/saintek.v6i1.1467
Tekin, A. (2014). Early Prediction of Students’ Grade Point Averages at Graduation: A Data Mining Approach. Eurasian Journal of Educational Research, 14(54), 207–226. https://doi.org/10.14689/ejer.2014.54.12
Thakar, P., Mehta, A., & Manisha. (2015). Performance analysis and prediction in educational data mining: A research travelogue. International Journal of Computer Applications, 110(15), 60–68.
Uzlah, L. I., Saputra, R. A., & Isnawaty. (2024). Deteksi Serangan Siber Pada Jaringan Komputer Menggunakan Metode Random Forest. Jurnal Mahasiswa Teknik Informatika, 8(3), 2787–2793. https://bit.ly/CyberSecurityAttacks.
Waheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from VLE big data using deep learning models. Computers in Human Behavior, 104. https://doi.org/10.1016/j.chb.2019.106189
Xing, W., Guo, R., Petakovic, E., & Goggins, S. (2015). Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory. Computers in Human Behavior, 47, 168–181. https://doi.org/10.1016/j.chb.2014.09.034
Published
2024-08-05
How to Cite
Sukarna, R. H., Holilah, H., Damyati, F., & Hilman, M. (2024). Analisis Prediksi Kelulusan Mahasiswa Universitas Sultan Ageng Tirtayasa Menggunakan Algoritma Machine Learning dan Feature Selection. Jurnal Ilmiah Sains Dan Teknologi, 8(2), 232 - 241. https://doi.org/10.47080/saintek.v8i2.3468