RANCANG BANGUN SISTEM DETEKSI KATARAK MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK

  • Widyawati Widyawati Universitas Banten Jaya
  • Rafli Sidik Universitas Banten Jaya
  • Ely Nuryani Universitas Banten Jaya
  • Persis Haryo Winasis IPWIJA University Jakarta
Keywords: Cataract, CNN, Deep Learning, Detection, VGG16

Abstract

 

Cataract is a condition in which the lens inside the eye becomes cloudy, resulting in blurred or hazy vision. RSAW treats around 800 cataract patients every month, served by seven cataract ophthalmologists. The limited number of doctors and different levels of expertise can affect the duration of the initial screening time. Therefore, a system is needed that can support doctors in the cataract diagnosis process. Convolutional Neural Network (CNN) is a type of neural network specifically designed to process image or video data. CNN is a type of deep learning model that can train systems using large amounts of data and integrate the feature extraction process with classification. This study aims to develop and evaluate the performance of a CNN-based cataract detection system as a tool for early diagnosis in cataract patients at RSAW. The CNN model was trained using an eye image dataset consisting of 1120 images of cataract and non-cataract patients. The CNN architecture used was VGG16, chosen for its ability to extract relevant features. The evaluation results show that the system is able to detect cataracts with an accuracy of 96.43%, This system has the potential to increase the efficiency of the screening process and reduce the workload of doctors, thereby improving the quality of eye health services.

References

Ardana, A. V. P. (2024). Sistem Deteksi Penyakit Mata Katarak Dengan Menggunakan Convolutional Neural Network (CNN).
Azizah, Q. N. (2023). Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network AlexNet. Sudo Jurnal Teknik Informatika, 2(1), 28–33. https://doi.org/10.56211/sudo.v2i1.227
Handhika, T. (2023). Implementasi Algoritma Convolutional Neural Network Dengan Arsitektur Vgg-16 Untuk Data Tak Seimbang Dalam Pengendalian Kualitas Hasil Produk Pengecoran.
Marcello, L. M., Oey, E., Lie, S., & Astuti, W. (2021). Automatic Cataract Detection System based on Support Vector Machine (SVM). Proceedings of the Second Asia Pacific International Conference on Industrial Engineering and Operations Management, 959–965.
Nuralia, S., Harliana, H., & Prabowo, T. (2023). Implementasi Naive Bayes Classifier Dalam Memprediksi Kelulusan Mahasiswa Implementation of Naive Bayes Classifier in Predicting Student Graduation. JACIS : Journal Automation Computer Information System, 3(01), 63–72. https://bit.ly/45fwDP4
Nuryani, E., Hasanah, H., Amiruddin, D., Saputri Pratama, S., Ilmu Komputer, F., Banten Jaya Jl Syekh Moh Nawawi Albantani Kp Boru Kecamatan Curug, U., Jaya, C., & Serang, K. (2024). Perancangan Sistem Informasi Pelayanan Pasien Berbasis Web Pada Praktik Mandiri Bidan Lia Yulianingsih. Journal of Innovation and Future Technology (IFTECH), 6(1), 1–14.
Pratama, A. A., & Utaminingrum, F. (2017). Sistem Pendeteksi Tingkat Keparahan Katarak Berdasarkan Citra Digital Menggunakan Metode U-Net dan CNN. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(1), 1–9. http://j-ptiik.ub.ac.id
Putra, F. A., Irawan, D., & Wulandari, C. (2024). Penerapan Metode CNN (Convulution Neural Network) Dalam Klasifikasi Buah. Journal of Information System Research (JOSH), 6(1), 733–740. https://doi.org/10.47065/josh.v6i1.6121
Putra, I. A. G. S., & Trisnawati, N. L. P. (2025). Sistem Pendeteksi Kesehatan Mental Remaja Menggunakan Metode Forward Chaining Dan Naive Bayes. Jurnal Sistem Informasi Dan Informatika (Simika), 8(1), 212–222.
R, I. M., Johan, T. M., & Luthfi, L. (2023). Klasifikasi Citra Ikan Menggunakan Algoritma Convolutional Neural Network dengan Arsitektur VGG-16. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(2), 978–985. https://doi.org/10.30865/klik.v4i2.1209
Setiawan, W. (2019). Perbandingan Arsitektur Convolutional Neural Network Untuk Klasifikasi Fundus. Jurnal SimanteC, 7(2), 49–54.
Syahrul, F. H., & Sasongko, P. S. (2022). Penerapan Convolutional Neural Network Untuk Klasifikasi Tingkat Keparahan Retinopati Diabetik Pada Penderita Diabetes Melitus. Jurnal Masyarakat Informatika, 13(1), 1–14.
Tilasefana, R. A., & Putra, R. E. (2023). Penerapan Metode Deep Learning Menggunakan Algoritma CNN Dengan Arsitektur VGG NET Untuk Pengenalan Cuaca. JINACS (Journal of Informatics and Computer Science), 05(1), 48–57.
Ting, D. S. W., Cheung, C. Y.-L., Lim, G., Tan, G. S. W., Quang, N. D., Gan, A., Hamzah, H., Garcia-Franco, R., Yeo, I. Y. S., Lee, S. Y., Wong, E. Y. M., Sabanayagam, C., Baskaran, M., Ibrahim, F., Tan, N. C., Finkelstein, E. A., Lamoureux, E. L., Wong, I. Y., Bressler, N. M., … Wong, T. Y. (2017). Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA Network, 318(22), 2155–2265. https://doi.org/10.1001/jama.2017.18152
Ushuludin, M. (2023). Sistem Deteksi Masker pada Wajah Menggunakan Convolutional Neural Network Arsitektur VGG16.
Widyawati, W., Oki Astrabuwono, M., Surahmat, A., & Kadun, K. (2024). Sistem Pendukung Keputusan Pemberian Penghargaan Karyawan Menggunakan Metode Multi-Attribute Utility Theory (MAUT) Di PT Nikomas Gemilang. Jurnal Innovation and Future Technology (IFTECH) P-ISSN, 6(1), 144–152.
Zahir, M., & Adi Saputra, R. (2024). Deteksi Penyakit Retinopati Diabetes Menggunakan Citra Mata Dengan Implementasi Deep Learning CNN. JURNAL TEKNOINFO, 18(1), 121–132. https://www.kaggle.com/datasets/gunavenkatdoddi/eye-diseases-classification
Published
2025-02-11
How to Cite
Widyawati, W., Sidik, R., Nuryani, E., & Haryo Winasis, P. (2025). RANCANG BANGUN SISTEM DETEKSI KATARAK MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK. Journal of Innovation And Future Technology (IFTECH), 7(1), 155-165. https://doi.org/10.47080/iftech.v7i1.3895

Most read articles by the same author(s)

1 2 3 4 5 > >>