DETEKSI AREA KERUSAKAN PADA CITRA TERUMBU KARANG AKIBAT CORAL BLEACHING BERBASIS PENGOLAHAN CITRA DIGITAL
Abstract
Coral reefs have a very large role in marine ecosystems, because they provide rich habitats and support biodiversity. Segmentation on images of coral reefs experiencing coral bleaching is also very important. Coral bleaching is a phenomenon in which coral reefs lose their symbiotic algae pigments, resulting in bleaching and possibly death of coral reefs. By segmenting coral reef images that experience coral bleaching, we can separate areas affected by bleaching from areas that are still healthy. This study aims to detect areas of damage that occur in underwater images of coral reefs that have experienced coral bleaching. By using techniques in digital image processing and segmentation based on colour intensity, satisfactory results are obtained. The test results show that the RAE and ME values are quite low, namely 0.051 and 0.035 respectively with an average processing time of 0.2 seconds. This research is expected to assist in further analysis and modelling related to coral bleaching to understand the causative factors and develop appropriate protection strategies.
References
Alhamad, A. (2021). Ekstrasi Ciri Metode Filter Gabor Untuk Deteksi Kerusakan Terumbu Karang. Jurnal Nasional CosPhi, 5(2), 2597–9329. http://www.image-net.org/.
Arifin, A. Z., Tanuwijaya, E., Nugroho, B., Priyatno, A. M., Indraswari, R., Astuti, E. R., & Navastara, D. A. (2019). Automatic image slice marking propagation on segmentation of dental CBCT. Telkomnika (Telecommunication Computing Electronics and Control), 17(6), 3218–3225. https://doi.org/10.12928/TELKOMNIKA.v17i6.13220
Banakar, A., Zareiforoush, H., Baigvand, M., Montazeri, M., Khodaei, J., & Behroozi-Khazaei, N. (2017). Combined Application of Decision Tree and Fuzzy Logic Techniques for Intelligent Grading of Dried Figs. Journal of Food Process Engineering, 40(3). https://doi.org/10.1111/jfpe.12456
Boilard, A., Dubé, C. E., Gruet, C., Mercière, A., Hernandez-Agreda, A., & Derome, N. (2020). Defining coral bleaching as a microbial dysbiosis within the coral holobiont. In Microorganisms (Vol. 8, Issue 11, pp. 1–26). MDPI AG. https://doi.org/10.3390/microorganisms8111682
Ihsan, M., Sauri, A., Widodo, A. W., Luthfi, O. M., Studi, P., Kelautan, I., & Perikanan, F. (2019). Klasifikasi Genus Karang Keras (Scleractinia) dengan Metode Gray Level Co-Occurrence Matrix (Vol. 3, Issue 6). http://j-ptiik.ub.ac.id
Irawan, J., Sasmito, B., & Suprayogi, A. (2017). PEMETAAN SEBARAN TERUMBU KARANG DENGAN METODE ALGORITMA LYZENGA SECARA TEMPORAL MENGGUNAKAN CITRA LANDSAT 5 7 DAN 8 (Studi Kasus : Pulau Karimunjawa) (Vol. 6, Issue 2).
Jamil, S., Rahman, M., & Haider, A. (2021). Bag of features (Bof) based deep learning framework for bleached corals detection. Big Data and Cognitive Computing, 5(4). https://doi.org/10.3390/bdcc5040053
Levy, J., Hunter, C., Lukacazyk, T., & Franklin, E. C. (2018). Assessing the spatial distribution of coral bleaching using small unmanned aerial systems. Coral Reefs, 37(2), 373–387. https://doi.org/10.1007/s00338-018-1662-5
Muchtar, M., Suciati, N., & Fatichah, C. (2016). FRACTAL DIMENSION AND LACUNARITY COMBINATION FOR PLANT LEAF CLASSIFICATION. Jurnal Ilmu Komputer Dan Informasi, 9(2), 96. https://doi.org/10.21609/jiki.v9i2.385
Ningrum, I. P., Muchtar, M., Saputra, R. A., Sajiah, A. M., Harati, S. R., & Jaya, H. (2020). Fuzzy Logic Methods to Identify Potential Area Mapping for Mangrove Forests in Kendari using Landsat Image. IOP Conference Series: Materials Science and Engineering, 797(1). https://doi.org/10.1088/1757-899X/797/1/012019
Oliver, J. K., Berkelmans, R., & Eakin, C. M. (2018). Coral Bleaching in Space and Time (pp. 27–49). https://doi.org/10.1007/978-3-319-75393-5_3
Pasrun, Y. P., Muchtar, M., Basyarah, A. N., & Noorhasanah. (2020). Indonesian License Plate Detection Using Morphological Operation. IOP Conference Series: Materials Science and Engineering, 797(1). https://doi.org/10.1088/1757-899X/797/1/012037
Ramadhan, A., Lindawati, & Kurniasari, N. (2016). NILAI EKONOMI EKOSISTEM TERUMBU KARANG DI KABUPATEN WAKATOBI Economic Value of Coral Reef Ecosystem in the Wakatobi District.
Riska, R., Tasabaramo, I. A., Lalang, L., Muchtar, M., & Asni, A. (2022). Kelimpahan Mikroplastik pada Sedimen Ekosistem Terumbu Karang di Pulau Bokori Sulawesi Tenggara. Jurnal Sumberdaya Akuatik Indopasifik, 6(4), 331–342. https://doi.org/10.46252/jsai-fpik-unipa.2022.vol.6.no.4.252
Setiawan, F., Muttaqin, A., Tarigan, S. A., Sabil, A., & Pinkan, J. (2017). PEMUTIHAN KARANG AKIBAT PEMANASAN GLOBAL TAHUN 2016 TERHADAP EKOSISTEM TERUMBU KARANG: STUDI KASUS DI TWP GILI MATRA (GILI AIR, GILI MENO DAN GILI TRAWANGAN) PROVINSI NTB. http://jfmr.ub.ac.id
Setiyorini, A., Purnama, I. P. N., Sari, J. Y., Muchtar, M., & Ngii, E. (2019). Vehicle number plate identification using template matching algorithm for automatic parking system. ACM International Conference Proceeding Series, 196–200. https://doi.org/10.1145/3330482.3330483
Song, H., Mehdi, S. R., Zhang, Y., Shentu, Y., Wan, Q., Wang, W., Raza, K., & Huang, H. (2021). Development of coral investigation system based on semantic segmentation of single-channel images. Sensors, 21(5), 1–21. https://doi.org/10.3390/s21051848
Thenu, I. M., & Makailipessy, M. M. (2017). PEMETAAN PERUBAHAN EKOSISTEM WILAYAH PESISIR KECAMATAN DULLAH UTARA KOTA TUAL CHANGE OF COASTAL ECOSYSTEM MAPPING IN NORTH DULLAH SUBDISTRICT TUAL CITY. In Jurnal Teknologi Perikanan dan Kelautan (Vol. 8). http://glovis.usgs.
Yang, R., Wu, M., Bao, Z., & Zhang, P. (2019). Cherry recognition based on color channel transform. ACM International Conference Proceeding Series, 292–296. https://doi.org/10.1145/3349341.3349419